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ELECTRIC POTENTIAL 

Electric Potential at a point in an electric field is defined as the amount of work done in 

bringing a unit charge from infinity to that point without acceleration. 

Suppose a charge qo is brought at a point A in the electric field created by a charge q and W is the 

work done by external agent which brings the charge at A.  

Then potential at point A is  

A
o

W
V

q
 

SI Unit of potential is joule per coulomb which is called volt (V).  

1 V = 1 J/C. Therefore,  

Potential at a point is said to be 1 volt when a work of 1 J is done in bringing a charge of 1 C from 

infinity to that point without acceleration. 

POTENTIAL DIFFERENCE 

If a charge q is moved from a point A to a point B and work done is W, then potential difference 

between A and B is written as ABV  and it is equal to  

  AB B A

W
V V V

q
 

W is given as W =  B Aq V V .  

Assuming q to be positive, W will be positive if B AV V i.e. charge is taken from a point of lower 

potential to a point of higher potential. Positive work means work has to be done by external 

agent. Now, if B AV V , W is negative which means work will be done by the charge i.e. charge will 

move by itself. Thus, we conclude  

 Positive charge moves from a point at higher potential to a point at lower potential. 

 Negative charge moves from a point at lower potential to a point at higher potential. 
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Second point can be understood by putting – q instead of q in above equation and analysing the 

sign of W. 

POTENTIAL DUE TO A POINT CHARGE  

Consider a point charge qo placed at a point A at a distance x from a charge q as shown. Now, 

suppose we move this charge from A to B through small distance dx. Small amount of work done 

in doing so  

 

  odW Fdxcos180 Fdx  

Angle is 180o because F and dx are opposite to each other. 

Since 


o
2

o

qq1
F

4 x
, therefore 


o

2
o

qq1
dW dx

4 x
 

Now, total work done in moving this charge from   x to x r is  



 


r
o

2
o

qq1
W dx

4 x
 



  
 

r
o

2
o

qq 1
W dx

4 x
 





  
 

r
2o

o

qq
W x dx
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 



 
       
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o

o

qq x
W
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

       
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o

o
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W
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      
o

o
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W
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 


o

o

qq 1
W

4 r
 

By definition, potential at point P is 
o

W

q
. Therefore 


 



o

o

o o

qq 1
4 r 1 q

V
q 4 r

 

Therefore, potential a distance r due to a charge q is  

o

1 q
V

4 r



 

POTENTIAL DUE TO A SYSTEM OF CHARGES 

As potential is a scalar quantity, so potential at a point due to a system of charges is the sum of 

potentials at that point due to individual charges. 

ELECTROSTATIC POTENTIAL ENERGY 

Work done to arrange a system of charges from infinite separation gets stored in the 

system in the form of electrostatic potential energy. 

Consider a charge q1 be kept at A. Let another charge q2 be brought from infinity to point B at a 

distance r from it. Then, work done to bring it at P is  

2

2
2

o

1 2

o

W q V

q1
W q

4πε r

q q1
W

4πε r



 
  

 



 

This work is stored in the system in the form of electrostatic potential energy. 

Thus, electrostatic potential energy of a system of two charges separated by a distance r 

1 2

o

q q1
U

4πε r
  

RELATION BETWEEN ELECTRIC FIELD AND POTENTIAL 

Consider a charge q moving from A to B in the direction of electric field as shown. Small amount of 

work done is 

 
 

B AdW q V V

dW q V dV V qdV .......(ii)

Also

dW Fdr qEdr .....(i)

 

    

 
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from (i) and (ii), we get

qdV qEdr

dV
E .....(iii)

dr

 

 

 

Therefore, E is also called potential gradient as it is equal to potential difference per unit distance. 

dV E.dr

or V E.dr Edr cosθ

 

    

 

   

Equation (iii) gives another unit for E which is V/m. 

EQUIPOTENTIAL SURFACE 

A surface on which potential is same at every point is called equipotential surface. 

PROPERTIES OF EQUIPOTENTIAL SURFACE 

(1) No work is done to move any charge between any two points on an equipotential 

surface. 

Proof: 

Let there be two points A and B on an equipotential surface. Then, work done to move a charge q 

between A and B is  

 B A

B A

W q V A

V V

W 0

 



 



 

(2) Electric field lines are always perpendicular to an equipotential surface. 

Proof: 

Let electric field makes and angle θ with the surface as shown. Now resolve E into two rectangular 

components: 

Ecosθ along the surface. 

Esinθ perpendicular to the surface. 

Since it is an equipotential surface so there is no flow of charge along the surface, therefore,  
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o

Ecosθ 0

E 0 cosθ 0 or θ 90



     

(3) No two equipotential surfaces can ever intersect. 

(4) Equipotential surfaces are closed in the region of 

strong electric field and farther in the region of weak 

electric field. 

Proof: 

V
E

r
1

So, if V is fixed E
r


 



 




 

POTENTIAL DUE TO DIPOLE 

AT A POINT ON AXIAL LINE 

Potential at P due to +q 

 q

kq
V

r a 


 

Potential at P due to –q 

 q

kq
V

r a





 

Therefore, total potential at P is  

   

axial q q

axial

V V V

kq kq
V

r a r a

  


  

 
 

   

 

axial 2 2

axial 2 2

axial 2 2

axial 2 2

kq r a kq r a
V

r a
kqr kqa kqr kqa

V
r a

2aq k
V

r a

kp
V

r a

  
 


  

 



 




 


 

For short dipole a<<r 
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axial 2

kp
V

r
   

AT A POINT ON EQUATORIAL LINE 

As shown in the diagram, potential at P due to +q 

q 2 2

kq
V

a r
 


 

Potential at P due to –q 

q 2 2

k( q)
V

a r






 

Therefore, total potential at P is  

eq q qV V V 0     

POTENTIAL AT ANY ARBITRARY POINT 

Consider a point P at a distance along a line making an 

angle θ  with the dipole axis. If we resolve p


 into two rectangular components as shown.  

Point P lies on the axial line of the dipole with dipole moment  

pcosθ  and on equatorial line of the dipole with the dipole moment psinθ  

2

2

kpcosθ
V 0

r

kpcosθ
V

r

 


 

CAPACITANCE  

The ability of a body to store charge is called capacitance. 

If a charge q is stored in the body and potential of body increases by V, then Capacitance of body 

is given by  

Q
C

V
  

SI unit of capacitance is coulomb per volt which is called farad (F). 

1coulomb
1 farad

1 volt
  
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Therefore, capacitance of a body is said to be one farad if its potential increases by 1 volt when a 

charge of 1 coulomb is given to it. 

CAPACITANCE OF A SPHERICAL BODY 

Consider a spherical body of radius R. If a charge q is given to it, its potential will be  

o

1 q
V

4πε R
  

Then the capacitance of the body is 

o

o

q q
C

1 qV
4πε R

C 4πε R

 

 

 

12

10

C 4 3.14 8.85 10 R

C 10 R





     

 
 

S for C to be 1 F, R = 1010 m which is impossible. So, 1 farad is a very big unit. 

Commonly used units of capacitance  

 
 
 

6

9

12

1 μF microfarad 10 F

1 nF nanofarad 10 F

1 pF picofarad 10 F













 

CAPACITORS 

A body which is specially designed to store charge is called capacitor. 

Most efficient design of a capacitor is parallel plate capacitor in which two metals plates are 

connected parallel to each other with some gap between them which is usually filled by some 

dielectric. 

When capacitor is connected to battery, following things happen: 

1. Electrons from plate A move from plate to battery due to the attraction of negative terminal. 
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2. Due to this action, plate gets positively 

charged. 

3. Electrons from negative terminal of battery 

move to plate B. 

4. Due to this action, plate B acquires negative 

charge. 

Important points to note 

1. Charge acquired by one plate is always equal and opposite to the other plate i.e. if one 

plate acquires charge +Q, other plate acquires charge – Q. 

2. The potential difference across the plates of capacitor becomes equal to potential 

difference of battery in fraction of seconds after connecting. 

3. Charge on capacitor is then, taken as Q, not zero. 

4. Capacitance of the capacitor is 
Q

C
V

 . 

CAPACITANCE OF A PARALLEL PLATE CAPACITOR 

Consider a parallel plate capacitor as shown.  

Let 

V = potential difference between the plates 

Q = charge on the capacitor 

E = Electric field between plates 

σ  = Surface charge density of the plates 

d = distance between the plates 

Q σA Q
As C [ σ ]

V V A
V Ed

σA
C

Ed

  







  

o

σ
field between plates capacitor is E

ε
  

o

o

ε AσA
C C

σ dd
ε

    
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If there is a medium of dielectric constant k between the plates, then 

o
o

o

kε Aε
k ε kε C

ε d
      

ENERGY STORED IN CAPACITOR (NOT IN SYLLABUS FOR SESSION 2023-24) 

Let dW be the small amount of work by the battery to store small charge dq 

So, dW = Vdq, where V is the voltage of the battery 

q
V

C
q

dW dq
C






 

Then, the total work done to store charge Q is 

 

Q

0

Q

0

Q2

0

22

2

q
dW dq

C
1

W qdq
C

1 q
W

C 2

1
W Q 0

2C

Q
W

2C



 

 
   

 

    

 

 



 

This work is stored in the capacitor in the form of electrostatic energy 

2Q
U

2C

Q CV








 

2 2C V
U

2C
   

21
U CV

2
   

2Q Q
or C U

QV 2
V

1
U QV

2

  


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ENERGY DENSITY (U) 

Energy density is energy stored in capacitor per unit volume. 

Energy stored
u

volume
  

21
CV

2
Ad

  

 
2 2

oε A1 E d

2 d Ad
  

2
o

1
u ε E

2
   

DIELECTRIC POLARIZATION 

When a non-polar dielectric is placed in an external electric field, it gets polarized. This 

phenomenon is called dielectric polarization. 

 A non-polar dielectric is one in which there are no negative or positive poles of charges.  

 When such material is placed in external electric field, the positive and negative centres of 

molecules get separated. 

 This happens because electrons of bond of molecules which are towards the positive side 

of field gets attracted towards the positive side. 

 Due to this, each molecule gets polarized and overall material gets polarized. 

 Due to this an electric field gets induced in a direction opposite to that of applied field. Let 

this field be Ep. 

 Net electric field inside the dielectric becomes o pE E E  . 

 If dielectric constant of the material is k, then oE
E

k
 . 

CAPACITOR WITH SLABS 

CAPACITANCE OF PARALLEL PLATE CAPACITOR WITH DIELECTRIC SLAB BETWEEN THE 
PLATES 

Consider a slab of thickness t inserted between the plates as shown 
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Potential difference between the plates is given by 

 oV E d t Et    

  o
o

o

E
V E d t t

k
t

V E d t
k

   

      

 

o

Let new capacitance be C'

Q
C'

V
Q

C'
t

E d t
k



 
    

  

oε A
C'

1
d t 1

k

 
   
 

 

CAPACITANCE OF A PARALLEL PLATE CAPACITOR WITH CONDUCTING SLAB BETWEEN THE 
PLATES 

Consider a conducting slab placed between the plates of a parallel plate capacitor as shown 

Since, electric field inside the conducting slab is zero, potential difference between the plates is 

given by  

 
   
 

 

o

o

o

o

V E d t Et

V E d t 0 t

V E d t

σ
V d t

ε

  

   

  

  

 

 
o

σ
V d t

ε

Q Q
C'

V

  

  
Q  

o

o

ε A
C'

d t
d t

Aε

 




 

COMBINATION OF CAPACITORS 

SERIES COMBINATION 

Consider three capacitors of capacitances C1, C2 and C3 connected in series as shown. Let 

potential difference across them be V1, V2 and V3 and charge stored by each is Q. 
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If V is applied voltage, then 

1 2 3

1 2 3

V V V V

Q
V

C
Q Q Q

V
C C C

  



   

  

eq

eq 1 2 3

If equivalent capacitance is C

Q Q Q Q

C C C C
  

 

Q


eq

Q
C


1 2 3

eq 1 2 3

1 1 1

C C C

1 1 1 1

C C C C

 
  

 

   
 

PARALLEL COMBINATION 

Figure shown three capacitors connected in parallel, let charge stored by each is 1 2 3Q ,Q and Q

and potential difference across each is V. If charge supplied by battery be Q, then 

1 2 3

eq eq

Q Q Q Q

Q C V, C equivalent capacitance

  

 
 

1 2 3

eq

Q C V C V C V

C V

  

 V  1 2 3

eq 1 2 3

C C C

C C C C

 

   

 

COMMON POTENTIAL  

If two capacitors of capacitances C1 and C2 are 

charged to potential V1 and V2 and are connected together, then, the charge flows from the 

capacitor at higher potential to the other at lower potential till the potential of both become equal, 

this equal potential is called common potential. 

Since total charge before and after remains same, therefore 

1 2 1 2

1 1 2 2

1 2

C V C V C V C V

C V C V
V

C C

  


 


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LOSS OF ENERGY ON SHARING OF CHARGES 

When charge is shared between the capacitors, energy is lost in the form of heat 

Total energy before sharing 

 

2 2
i 1 1 2 2

2
f 1 2

1 1
U C V C V

2 2
total energy after sharing

1
U C C V

2

 

 

 

i fHeat loss, U U U     

  

   
 

     
 

2 2 2
1 1 2 2 1 2

2

1 1 2 22 2
1 1 2 2 1 2 2

1 2

22 2
1 1 1 2 2 2 1 2 1 1 2 2

2

1 2

2 2
1 1

1
U C V C V C C V

2

C V C V1
U C V C V C C

2 C C

C V C C C V C C C V C V1
U

2 C C

C V1
U

2

    

          
    

          
  

  
2 2 2 2

1 2 1 1 2 2 2 2C C V C C V C V   2
1 1C V 2 2

2 2C V 1 2 1 2

1 2

2C C V V

C C

  
   

 

 

2 2
1 2 1 2

1 2
1 2

2

1 2 1 2

1 2

V V 2V V1
U C C

2 C C

C C V V1
U

2 C C

  
     


  



 

 

 

 


