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Current Electricity 

It is the branch of physics in which we study the behaviour of moving charges. 

Electric current (I) 

Rate of flow of charge is called electric current.  

If a charge q flows through any cross section of a conductor in time t, then electric current,  

q
I

t
  

SI unit of electric current is 1Cs (coulomb per second), this unit is called ampere (A). 

Definition of 1 ampere: Current through a conductor is said to be one ampere when a charge of 1 coulomb 

flows through any cross section of the conductor in 1 second.  

Types of current: There are two types of electric currents, alternating current, which changes its magnitude 

and direction in a sinusoidal manner with time and direct current which remains constant in both magnitude 

and direction. We will focus on direct current in this chapter. We have a separate chapter (chapter 7) for 

studying alternating current. 

Drift velocity  

In a wire, which is not connected to battery, electrons move in random manner due to their thermal energies. 

When the battery is connected all electrons start drifting towards the positive end of the battery.  

We may define drift velocity as the average velocity with which electrons get drifted towards the 

positive terminal of the battery under the influence of an external electric field.  

Let the initial velocities of electrons (in the absence of battery) be 1 2 3 nu ,u ,u .............u , then, 

1 2 3 nu u u ............. u
0

n

  
 . When the battery is applied, acceleration of each electrons is 

eE
a

m
 .  

When electrons move in a conductor, they keep colliding with the heavy ions present in it and come to a 

momentary rest. Time gap between two successive collisions is called relaxation time ( τ ).  

Thus, if 1 2 nv ,v ..........v be the final velocities of electrons then, by definition, drift velocity is  
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1 2 n
d

v v .......... v
v

n

 
 .  

Since,  τ τ τ τ1 1 1 2 2 2 3 3 3 n n nv u a , v u a , v u a .........v u a        .  

Therefore dv  becomes  

       τ τ τ τ1 1 2 2 3 3 n n
d

u a u a u a ......... u a
v

n

      
  

τ τ τ1 2 n 1 2 n
d

u u ........ u ............
v a

n n

           
   

 

Or τd

eE
v

m
 ,  

where τ  is average relaxation time.  

Relation between current and drift velocity 

Consider a conductor of length   and area of cross section A connected to battery of potential difference V.  

Then, volume of the conductor is A  .  

If number density of electrons in the conductor (number of 

electrons per unit volume) is n, then total number of 

electrons in conductor is A  n.  

Hence, total charge is, q = A  ne.  

Therefore, current in the conductor is given by 

d

q A ne
I I

t

v

  
 
 
 




. Or  dI Anev . 

Ohm’s law 

Statement. It states that current flowing through a conductor is directly proportional to the potential 

difference applied across its ends provided the physical conditions are constant.  

As potential is work done by battery to move one coulomb of charge once around a complete circuit. So, if 

potential difference is more this means that battery will provide more energy to one coulomb charge and 

hence, the rate of low of charge i.e. current, increases. If V potential difference is applied across the end of 

a conductor and a current I flows through it, then V I  

Or                         V IR                   ……… (i) 
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Resistance: In the equation V = IR, r is called resistance of the material of the conductor.  

It is a physical quantity that is concerned with the opposition to the flow of current through a 

conductor. More the resistance, more the opposition to the flow of current.  

V IR

V
R

I



 


 

Therefore, SI unit of resistance is volt per ampere ( 1VA ), this unit called ohm ( ).  

Resistance of a conductor is said to be 1 ohm when a current of one ampere flows through the conductor 

when a potential difference of 1 ohm is applied across its ends.  

Dimensions of resistance are 2 2 3MA L T    . 

Proof of Ohm’s law:  

τd d

eE
I Anev and v

m
   

 

τ

τ

τ

=
τ

2

2

2

eE
I Ane

m

Ane E
I

m

Ane V
I =

m

m
V I ......... ii

Ane

    
 

 

   
 






 

If physical conditions are constant 
τ2

m

Ane


is constant. Therefore, V I.  

Comparing (i) and (ii), we get 
τ2

m
R

Ane



                  ………. (iii) 

Factors affecting resistance of a conductor 

Resistance of a conductor depends upon following factors 

i. R    

ii. 
1

R
A

  

Combining (i) and (ii), we get R
A




Or R ρ
A




                 ………. (iv) 
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Where ρ  is called the resistivity of the conductor. It is the specific resistance of the material of the 

conductor and depends only on the nature of the material of the conductor.  

Combining (iii) and (iv) we get 
τ2

m
ρ

ne
 .  

SI unit of resistivity is Ωm. 

If 1 unit and A = 1 unit, then R ρ .  

Therefore, resistivity is equal to resistance of a conductor when length of conductor is 1 unit and area of cross 

section is 1 square unit. 

Conductance 

 Reciprocal of resistance is called conductance.  

 
1

G
R

  

 SI unit of conductance is   1
ohm or mho or siemens(S)


. 

 Symbol of conductance is G. 

Conductivity 

 Reciprocal of resistivity is called conductivity.  

 
1

σ
ρ

  

 SI unit of conductivity is 1 1 1 1m or mhom or Sm    .  

 Symbol of conductivity is σ . 

Current density (J) 

 Current flowing per unit area of cross section of a conductor is called current density 

 I
J

A
  
 

. 

 SI unit of current density it Am-2. 

 Symbol of current density is J. 

Microscopic or vector form of ohm’s law 

τdAnevI eE
J J J ne

A A m
       
 

  
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τ2ne
J E

m
    

or J σE
 

              ………. (v) 

Equation (v) is called microscopic form of ohms law or vector form of Ohm’s law. 

Electron mobility (μe) 

Drift velocity per unit electric field is called electron mobility.  

i.e. d
e

v
μ

E
 . Its value represents how mobile a charge carrier is (i.e. how easily it can travel).  

If a charged particle acquires higher drift velocity on application of small electric field, the its mobility is high. 

SI unit of mobility is 1 1ms N C.   

Temperature dependence of resistivity 

Metals  

Since, resistivity, 
τ2

m
ρ

ne
  i.e. it is inversely proportional to relaxation time. When we increase the 

temperature, kinetic energy of electrons increases and they collide more frequently with ions so their 

relaxation time decreases and hence resistivity of metal increases. If  

 

o o
o t

t o

ρ resistivity at 0 C, ρ resistivity at t C, then

ρ ρ 1 αt

 

 
 

where α is called temperature coefficient of resistivity. It is constant for a material for a given range of 

temperature. SI unit of α is 1K . It is numerically equal to change in resistivity per unit original resistivity per 

degree rise in temperature. 

Alloys and semiconductors 
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Alloys like Nichrome (which is an alloy of nickel, iron and chromium) exhibit a very weak dependence of 

resistivity with temperature. Manganin and constantan have similar properties. These materials are thus 

widely used in wire bound standard resistors since their resistance values would change very little with 

temperatures. Unlike metals, the resistivities of semiconductors decrease with increasing temperatures. 

Graphical variation of resistivity for metals, alloys and semiconductors is shown below.  

Combination of resistors (not in syllabus since) 

Series combination 

Two resistors are said to be in series if only one of their end 

points is joined. If a third resistor is joined with the series 

combination of the two, then all three are said to be in 

series. Clearly, we can extend this definition to series 

combination of any number of resistors. Consider two 

resistors 1 2R and R  in series. The charge which leaves 1R  

must be entering 2R .  

Since current measures the rate of flow of charge, this means that the same current I flows through 1 2R and R   

By Ohm’s law: Potential difference across 1 1 1R V IR  , and 

Potential difference across 2 2 2R V IR  . 

The potential difference V across the combination is 1 2V V .  

Hence,  1 2 1 2V V V I R R      

This is as if the combination had an equivalent resistance eqR , which by Ohm’s law is 

eq 1 2R R R   
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This obviously can be extended to a series combination of any number n of resistors 1 2 nR ,R ...........,R . The 

equivalent resistance eqR  is  eq 1 2 3R R R R .........     

Parallel combination 

Consider now the parallel combination of two resistors (Fig. 

3.15). The charge that flows in at A from the left flows out 

partly through 1R  and partly through 2R . The currents 

1 2I,I andI  shown in the figure are the rates of flow of charge at 

the points indicated. Hence, 

1 2I I I   

The potential difference between A and B is given by the Ohm’s law applied to 1R  

1 1V I R  

Also, Ohm’s law applied to 2R  gives 

2 2V I R  

1 2

eq 1 2

I I I

V V V

R R R

  

  
 

Or 
eq 1 2

1 1 1

R R R
   

If n resistors are connected in parallel, then, 

eq 1 2 3 n

1 1 1 1 1
................

R R R R R
     

Internal resistance, terminal potential difference and emf of a cell 

Internal resistance. It is the resistance offered by material of the cell. When the cell is not used in a circuit 

and no current is drawn from it, potential difference between its ends is called its emf.  

When some current is drawn from the cell, some part of the emf is used to overcome its own internal 

resistance, so the potential difference across the external component is less than emf of the cell. This 

potential difference is called terminal potential difference. 



 

 

8 

Let ε be emf of the cell, V be the terminal potential difference, r be the internal resistance, R be external 

resistance and I be the current flowing in the circuit then, potential drop across internal resistance is Ir. 

Therefore, potential drop across external resistance is,  

V ε IR                      ………. (vi) 

Ir ε V

ε V
r

I

  


 
 

ε V
r

V
R


   

ε V
r R

V

    
 

 

Or 
ε

r 1 R
V

    
 

  

Charging During charging of a cell, current flows in reverse direction with the help of external agency, so the 

terminal potential difference becomes  

V =  ε + IR 

Combination of cells 

Like resistors, cells can also be connected in series and parallel combination.  

Series combination 

Consider two cells of emfs 1 2ε and ε  and internal resistances 1 2r andr are connected in series.  

If 1 2V and V be the terminal potential differences of the two cells, then V = 1 2V V  

   
   

1 1 2 2

1 2 1 2

V ε Ir ε Ir

V ε ε I r r

    

    
 

Comparing this with eq eqV ε Ir   we get  

eq 1 2ε ε ε   

This result can be extended to series combination of n cells as  eq 1 2 3 nε ε ε ε .............ε    

Parallel combination 
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If two cells are connected in parallel, terminal potential difference across them is same but current is different, 

∴ total current 

1 2I I I   

1 1

1 2

ε V ε V
I

r r

 
    

1 2

1 2 1 2

ε ε 1 1
I V

r r r r

 
     

 
 

1 2 1 2 2 1

1 2 1 2

1 2 2 1 1 2

1 2 1 2

r r ε r ε r
V I

r r r r

ε r ε r r r
V I

r r r r

  
   

 
 

      

 

Comparing this with eq eqV ε Ir   we get  

1 2 2 1
eq

1 2

ε r ε r
ε

r r





 

This result can be extended to parallel combination of n cells as 

31 2 n
eq

1 2 3 n

εε ε ε
ε ............

r r r r
     

Kirchhoff’s laws 

1st law (junction rule) 

The algebraic sum of currents meeting at a junction is 0.  

 

In the figure shown above 2 3 1 4 5I I I I I     or          2 3 1 4 5I I I I I 0         

This law is the result of conservation of charge. As no charge can accumulate at a junction, so the amount 

of charge entering a junction per unit time is equal to amount of charge leaving junction per unit time. 

2nd  law (loop rule) 
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The algebraic sum of potential drops across all the components in a closed loop of an electric circuit 

is zero. This result is direct result of law of conservation of energy. 

Steps to solve circuits 

1) Assume unknown currents in the given circuit and show their directions by arrows. 

2) Choose any loop and find the algebraic sum of voltage drops plus the algebraic sum of emfs in that 

loop and put it equal to zero. 

3) Write equations for as many loops as the number of unknown 

quantities. Solve the equations to find the unknown quantities. 

4) If the value of assumed current comes out to be negative, it means 

that the actual direction of current is opposite to that of assumed 

direction. 

Example: In loop AFEBA : 1 1 1 2 2 2ε I r I r ε 0      

In loop BEDCB: 2 2 2 3 3 3ε I r ε I r 0      

Wheatstone bridge 

Wheatstone bridge is a circuit which is used to measure accurately an unknown resistance. 

Principle. It states that when the bridge is balanced (i.e. when gI 0 ), the product of resistances of 

opposite arms is equal.  

Applying Kirchhoff’s second law to loop ABDA, we get 

 

 

1 g 1

g

1 1̀

I P I G I I R 0

SInce I 0

I P I I P 0

   



   

 

 1 1I P I I R ..........(i)    

Applying second law in loop BCDB, we get 

   

 
 

1 g 1 g g

g

1 1

1 1

I I Q I I I S I G 0

I 0

I Q I I S 0

I Q I I S ..........(ii)

     



   

  


  

From (i) and (ii) we get 

P R

Q S
  
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Or PS QR  


