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Biot Savart’s law 

A current-carrying wire produces a magnetic field around it. Biot-Savart law states that the magnitude of the 

intensity of small magnetic field dB due to current I carrying element dl at any point P at a distance r from it 

is: 

 dB I  

 dB dl  

 dB sin   

 
2

1
dB

r
  

Combining these, we get  

2

Idlsin
dB

r


   

Or o
2

μ idlsinθ
dB

4π r
   
 

 

Where θ is the angle between r and dl and 7 1
oμ 4π 10 TmA    is called magnetic permeability of free 

space. 

In vector form 

 o
3

I dl rμ
dB

4π r





 

So the direction of dB is perpendicular to the plane containing r and dl


. 

SI unit of magnetic field strength is tesla denoted by T and cgs unit is gauss denoted by ‘G’ where 1 T = 104 

G. 

Comparison of Coulomb’s law and Biot Savart’s law 

 Both depend inversely on the square of the distance between the source and point. 

 Magnetic field is produced by a vector source Idl i.e., current element, whereas the electric field is 

produced by scalar source electric charge q. 
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 Electric field is along displacement vector joining source and field point, whereas the magnetic field 

is perpendicular to the plane containing displacement vector r and current element Idl 

 There is an angle dependence in Biot- Savarts law which is not present in electrostatic case. The 

magnetic field at any point in the direction of dl is zero. 

 Relation between permeability of free space oμ to the permittivity oε is 8 1

o o

1
c 3 10 ms

μ ε
    

where c is the speed of light in vacuum. 

Applications of Biot Savart’s law 

Magnetic field at the centre of a circular loop carrying current 

Consider a circular current carrying loop carrying current I. We have to to find magnetic field at the centre of 

this loop. Consider a small current element dl on the circumference of this loop. Clearly, angle between dl 

and r is 90o. Applying Biot Savart’s law, we get 

o
o

2

o
2

μ Idlsin90
dB

4π r

μ Idl
dB

4π r

 
  

 

 

 

Integrating both sides we get  

o
2

o
2

o
2

o

μ Idl
dB

4π r
μ I

B dl
4π r
μ I

B 2πr
4π r

μ I
B

2r



 

  

 

 


 

If coil has n turns, then  on I
B

2r


  

Magnetic field due to arc 

As complete circle is also an arc which subtends an angle 2πat 

the centre so by applying the unitary method, we can find the 

magnetic field at the centre of arc as follows: 
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Angle  Magnetic field  

2π  oμ I

2r
 

1 radian  
o oμ I μ I1

2r 2π 4πr
   
 

 

Any angle θ  
oμ I

B θ
4πr

   

 

Magnetic field due to a straight conductor 

Magnetic field at point P at a perpendicular distance r from from a straight cinductor carrying current I is  

 o
1 2

μ I
B sinφ sinφ

4πr
   

Special cases 

When length of wire is infinite (or very long) and distance r is very 

small then 

 If P lies near one end , then o o
1 2φ 90 and φ 0    

 o oo

o

μ I
so, B sin90 sin0

4πr

μ I
B

4πr

 

 
 

 If P lies near centre, then o o
1 2φ 90 and φ 90   

 o oo

o

μ I
so, B sin90 sin90

4πr

μ I
B

2πr

 

 
 

Magnetic field on the axis of a 
circular loop 

Small magnetic field due to current 

element Idl of circular loop of radius r at a 

point P at distance x from its centre is

 
o

o o
2 2 2

μ μIdlsin90 Idl
dB

4π s 4π r x
 


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Component dBcosφ  due to current element at point P is cancelled by equal and opposite 

component dBcosφ of another diagonally opposite current element, whereas the sine componentsdBsinφ

add up to give net magnetic field along the axis. So net magnetic field at point P due to entire loop is  

   

 

 

 

2πr
o

1/22 20 2 2

2πr
o

3 0
2 2 2

o
3

2 2 2

2
o

3
2 2 2

μ Idl r
dBsinφ .

4π r x r x

μ Ir
B dl

4π r x

μ Ir
B .2πr

4π r x

μ Ir
B .

2 r x


 

 


 


 


 



 

Which is directed along the axis (a) towards the loop if current in it is in clockwise direction (b) away from 

the loop if current in it is in anticlockwise direction. 

Special points 

 If point P is far away from the centre of the loop i.e. x >> r then magnetic field at point P is 

2 2
o o o

3 3

μ Ir μ Iπr μ IA
B or B

2x 2πx 2πx
    where A is the area of the circular loop. 

 If circular loop has N turns then magnetic field strength at its centre is oμ NI
B

2r
  and at any point on 

the axis of circular loop is 

 

2
o

3
2 2 2

μ NIr
B

2 r x




 

Direction of magnetic field  

Right hand thumb rule or right hand grip rule or 
right hand palm rule 

It states that if we hold a current I carrying wire in our right 

hand, such that the thumb points in the direction of current, 

then the curled fingers around it give us the direction of 

magnetic field lines around it. 

Ampere’s circuital law 

It states that the line integral of magnetic field intensity over 

a closed loop is oμ  times the total current threading the loop. 
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oB.dl μ I


 

Proof: 

Consider a straight conductor carrying current as shown in the figure. Consider a circular Amperian loop of 

radius r around the conductor. As B and dl


 are in same direction so angle between them is 0. Therefore 

o

o

o

o

B.dl

Bdlcos0

Bdl

B dl

μ I
2πr

2πr
μ I

B.dl μ I







 



 












 

Applications of ampere’s circuital law 

Magnetic field intensity at the centre of a long solenoid 

Let a solenoid consists of n no. of turns per unit length and carry current I. Then magnetic field lines inside 

the solenoid are parallel to its axis whereas outside the solenoid the magnetic field is zero. Line integral of 

magnetic field over a closed loop PQRS shown in the figure is  

Q R S P

P Q R S
B.dl B.dl B.dl B.dl B.dl       

        
 

Q R Po o o

P Q S

Q

P

B.dlcos0 B.dlcos90 0 B.dlcos90

B dl 0 0 0 BL

   

    

  


 

But by Ampere’s circuital law 

o

o

o

B.dl μ total current threading loop PQRS

μ number of turns in solenoid PQRS I

μ nLI

 

  






 

Therefore 

o oBL μ nLI B μ nI    
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Note: at the ends of the solenoid the magnetic field is o

1
B μ nI

2
  

Force acting on a charged particle moving in a magnetic field 

If a charge q is moving with velocity v in a magnetic field of intensity B such that the angle between velocity 

vector and magnetic field vector is θ, then a force F acts on the particle such that 

i) F q

ii)F v

iii) F B

iv) F sinθ






 

Combining all these, we get 

F qvBsinθ

F qvBsinθ



 
 

As the value of constant in this relation is 1 in SI units. 

In vector form  

 F q v B 
 

, thus F is perpendicular to the plane containing v and B. 

Direction of F can be found by Fleming’s left 
hand rule 

It states that stretch the thumb, forefinger, and central finger 

of the left hand in a mutually perpendicular position such that 

the forefinger is pointing towards the direction of the magnetic 

field, central finger pointing towards the direction of motion of 

positive charge (direction of current) then the direction of 

thumb gives the direction of force acting on the particle.  

Definition of 1 tesla 

1 o o

F
Since B

qv sinθ

So If q 1 C, v 1 ms , θ 90 (sin90 1), then B 1T



    

 

Magnetic field is said to be 1 tesla when a charge of 1 coulomb moving at a speed of 1 m/s perpendicularly 

to the direction of field experiences a force of 1 newton in it. 

If a charge q enters perpendicularly into a magnetic field, then its path will be circular as force always acts 

in a direction perpendicular to the direction of motion of motion of the charge. Centripetal force required for 

circular motion is provided by the magnetic force acting on the particle. Thus  
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2mv
q v

r
 B

mv
qB

r


 

Radius of the path (r) 

mv
r

Bq


 

Velocity (v) 

Bqr
v

m


 

Time period (T) 

2πr 2π r
T

v
 

Bqr

2πm

Bq

m

  

Frequency 

1 Bq
v

T 2πm
 

 

Angular frequency 

 

Bq Bq
ω 2πv 2π

2πm m
     

Kinetic energy  

2
21 1 Bqr

KE mv m
2 2 m

1
KE m

2

    
 

 
2 2 2

2

B q r

m

2 r 21 B q r

2 m


 

If charge particle enters at an angle with the direction of magnetic 

field then split its velocity into rectangular components v cosθ

along the field and v sinθ perpendicular the field as shown. Due to these two components, the motion of the 

charge is helical. Distance between two turns of the helix is called pitch(d) which is given by 

2πm
d v cosθ time period v cosθ

Bq
     
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Lorentz force 

Force acting on a particle in a region where both electric and magnetic fields exist is called Lorentz force. 

Lorentz force is the resultant of electric and magnetic force acting on the particle. 

 
E BF F F

F qE q v B

 

  

 

   

Velocity selector or velocity filter 

Consider a situation as shown in the figure in a charge is moving perpendicularly to both electric and magnetic 

fields such the force the force acting on charge due 

to both the fields is equal and opposite i.e. 

qE = qvB 

E
v

B
   

This result is used in velocity selectors or velocity 

filters in which we have to select a particle with a particular value of velocity. 

Force acting on a current carrying conductor placed in a magnetic field 

Consider a conductor of length and area 

of cross section A carrying current I placed 

in a magnetic field at an angle θ as 

shown. If number density of electrons in 

the conductor is n then total number of 

electrons in the conductor is A n . 

As force acting on one electron is df ev Bsinθ  where dv  is the drift velocity of electrons.  

So the total force acting on the conductor is  

 dA nf A n ev Bsinθ   

 dAnev Bsinθ   

F I Bsinθ    

Direction of this force can be determined by Fleming’s left hand rule. 

Force between two parallel straight conductors carrying current 
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When the currents are in same direction 

When two current carrying conductors are placed parallel to each other, each conductor produces a magnetic 

field around itself. So, one conductor is placed in the magnetic field produced by the other. Using Fleming’s 

left hand rule it can be easily shown that the forces on them are such that they attract each other. Force 

acting on 1st conductor is given as  

o
1 1 2

o 2
1 1

o 1 21

F I B sin90

μ I
F I

2πr

μ I IF

2πr





 







  

Now force acting on 

conductor 2 is given by  

o
2 2 1

o 1
2 2

o 1 22

F I B sin90

μ I
F I

2πr

μ I IF

2πr





 







 

Therefore 1 2F F  

When the current is in opposite direction 

 the conductors will repel each other the magnitude of force will be same as derived above. 

Torque acting on a current carrying conductor placed in a magnetic field 

When a rectangular loop PQRS of sides ‘a’ and ‘b’ carrying current I is placed in uniform magentic field B, 

such that area vector A makes an angle θ with direction of magnetic field, then forces on the arms QR and 

SP of loop are equal, opposite and collinear, thereby perfectly cancel each other, whereas forces on arms 

PQ and RS of loop are equal and opposite but not collinear, so they give rise to torque on loop. 
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Force on side PQ or RS of loop is oF IbBsin90 IbB   

Perpendicular distance between two non collinear forces r asinθ   

So, torque on the loop is  

 τ F IbBasinθ I ab Bsinθ

or τ IABsinθ

  


 

If loop has N turns then τ NIAB sinθ . 

In vector form τ M B 
 

 where M = NIA is called magnetic dipole moment of current loop abd is directed in 

direction of area vector. 

 If the plane of the loop is normal to the direction of magnetic field i.e. θ = 0o between B and A
 

then 

the loop does not experience any torque i.e. minτ 0  

 If the plane of the loop is parallel to the direction of magnetic field i.e. θ = 90o between B and A
 

then the loop experience maximum torque maxτ NIAB  

Moving coil galvanometer 

Moving coil galvanometer is used to detect or measure small currents. It works on the principle that when an 

electric current is passed through a coil placed in a magnetic field, it experiences a torque, whose magnitude 

is proportional to the strength of electric current passed through it. 

In order to make torque on the coil independent of angle θ between the area vector A and magnetic field B, 

so that the plane of coil always remain parallel to the 

field. 

1) The radial magnetic field is applied by cutting the 

poles of magnet concave, and 

2) The core of coil is filled by soft iron 

Therefore, when current is passed through a coil 

suspended in radial magnetic field, it experiences a 

torque NIAB and gets deflected by an angle θ where it is 

balanced by restoring torque kθ, developed in 

suspension strip, where k is restoring torque per unit 

deflection or torsional constant of suspension strip. 

Thus NIAB = kθ 
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Or 
k

I θ
NAB

  

I Gθ

or I θ




 

So by measuring deflection α, we can measure current I passing through the coil. 

Where 
k

G ,
NAB

 G is called galvanometer constant. 

So measuring by deflection α, we can measure current I passing through the coil. 

Current sensitivity (Is) 

It is defined as the deflection produced in the galvanometer coil when unit current is passed through it. 

Thus s

θ
I

I
 . SI unit is rad/A.  

θ 1 NAB
since

I G k
   therefore, the increase current sensitivity we should 

 Increase N which is not possible beyond a certain limit as it makes galvanometer bulky. 

 Increase A which is not possible beyond a certain limit due to space. 

 Increase B  

 Decrease k, so we use phosphor bronze strip in galvanometer because it has very small k. 

Voltage sensitivity ( sV ) 

Is the defined as the deflection produced in galvanometer coil when unit voltage is applied across its 

terminals. s

θ
V

V
 . SI unit is rad/V. 

Conversion of galvanometer into ammeter 

A galvanometer can be converted into ammeter by connecting a low shunt resistance in parallel with it, so 

that most of the current by passes through the shunt resistance, enabling the galvanometer to measure much 

larger currents. 

Thus if a galvanometer of resistance 

Rg which gives full scale deflection at 

gI is to be used to convert into an 

ammeter capable of measuring a 

maximum current I , we connect a 

shunt resistance R in parallel with it which is obtained as 
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 R G g g g

g g

g

V V I I R I R

I R
R

I I

   

 


 

Conversion of galvanometer into voltmeter 

A galvanometer can be converted into voltmeter by connecting high resistance in series with it, so that most 

of the voltage applied drops across it, enabling the galvanometer to measure much larger voltages. 

 

Thus is the galvanometer of resistance gR which gives full deflection at current gI , is to be converted into 

voltmeter capable of measuring maximum voltage up to V volts, then a high resistance R is connected in 

series with it which is given by  

g g g g g g g
g

V
V I R I R or V I R I R or R R

I
       

Figure of merit 

The figure of merit of a galvanometer is a measure that indicates its sensitivity. It is defined as the current 

required to produce a deflection of one scale division in the galvanometer. In other words, it tells you how 

much current is needed to achieve a certain amount of movement in the needle or indicator of the 

galvanometer. 

Mathematically, the figure of merit (K) of a galvanometer can be expressed as: 

gIk
n

  

 SI unit of k is division per ampere. 

 

 

 

 

 

 


