
 

 

 

MOST IMPORTANT QUESTIONS PHYSICS CLASS 11 TERM 2 

Some questions are written in red. These questions are not in syllabus of term 2 but if that topic is 
discussed in your school, then the question is important. 

For video lectures of these topics visit “Mandeep Education Academy” YouTube channel 

Q1: State and prove Bernoulli’s principle or Bernoulli’s theorem. 

Bernoulli’s Principle states that the sum of pressure energy, kinetic energy and potential energy per unit 
volume of an incompressible, non-viscous fluid in a streamlined irrotational flow remains constant along a 
streamline 

Mathematically, it can be expressed as  

               21
 +  p v  + gh = constant

2
P   

Proof. Consider a non-viscous and incompressible fluid flowing steadily between the sections A and B of a 
pipe of varying cross-section. Let a1 be the area of cross-section at A, v1 the fluid velocity, P1 the fluid 
pressure, and h1 the mean height above the ground level. Let a2, v2 , P2 and h2  be the values of the 
corresponding quantities at B. 

Let p be the density of the fluid. As the fluid is incompressible, so whatever mass of fluid enters the pipe at 

section A in time  t, an equal mass of fluid flows out at section B in time  t. This mass is given by 

m = Volume x Density 

     = Area of cross-section x length x density 

Or    m = a1 v1  t p = a2v2 t p 

K.E of the fluid 

             = K.E at B – K.E at A 

Or    a1 v1 = a2 v2 

            Change in 
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Change in P.E of the fluid 

  =  P.E at B – P.E at A 

  =  2 1 1 1 2 1( ) ( )mg h h a v t g h h     

Net work done on the fluid 

 



 

 

       = work done on the fluid A – Work done by the fluid at B 

       = 1 1 1 2 2 2Pa v t P a v t      

       = 1 1 1 2 2 2Pa v t P a v t    

       =  1 1 1 2( )a v t P P   

By conservation of energy, 

Net work done on the fluid 

    = change in K.E of the fluid + change in P.E of the fluid 

1 1 1 2( )a v t P P     

                = 2 2
1 1 2 1 1 1 2 1

1
( ) ( )

2
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Dividing both sides by 1 1a v t , we get 
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Q2: Discuss how a liquid rise or fall in a capillary tube hence derive ascent formula. 

Ascent Formula. Consider a capillary tube of radius r dipped in a liquid of surface tension   and the 
density p. 

As the pressure is greater on the concave 
side of a liquid surface, so excess of 
pressure at a point A just above the 
meniscus compared to point B just below 
the meniscus is  

 
2

p
R


  

 

 



 

 

Where R = radius of curvature of the concave meniscus. If   is the angle of contact, then from the right 
angled triangle shown in (b), we have 
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Due to this excess pressure p, the liquid rises in the capillary tube to height h when the hydrostatic 
pressure exerted by the liquid column becomes equal to the excess pressure p. Therefore, at equilibrium 
we have  
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                              h=     
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This is the ascent formula for the rise of liquid in a capillary tube.       

 

Q3: Derive a relation between two principle specific heats of a gas or derive Mayer’s formula. 

Relation between CP and CV: Mayer’s formula. 

Consider n moles of an ideal gas. Heat the gas to raise their temperature by dT. According to the first law 

of thermodynamics, the heat supplied dQ is used to partly to increase the internal energy and partly in 

doing the work of expansion. That is,   

 dQ = dU + PdV 

If the heat dQ is absorbed at constant volume, then dV = 0 and we have 

V

V

dQ nC dt and dQ dU

dU nC dt                           .................(i)

 

 
 

If now the heat dQ is absorbed at constant pressure, then 

P

dQ dU PdV

nC dt dU PdV

 
  

 



 

 

Change in internal energy is same in both case because temperature change is same.  

Using (i) we get  

 
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Putting this in above relation, we get 

 P v

P V

n C C dt nRdt

or C C R

 

 
 

This is the required relation between P VC and C . It is also known as Mayer’s Formula. 

Q4: What is terminal velocity? Derive and expression for the terminal velocity of a body falling freely 
in a viscous medium. 

Terminal Velocity. The maximum constant velocity acquired by a body while falling through a viscous 
medium is called as Terminal Velocity. 

Expression for terminal velocity. Consider a spherical body of radius r falling through a viscous liquid of 
density of the body. 

   As the body falls, the various forces acting on the body are: 

1. Weight of the body acting vertically downwards. 

         W = mg = 34
 r  g

3
p  

2. Upward thrust equal to the weight of the liquid displaced. 

         U = 34
 r  g

3
   

3. Force of viscosity F acting in the upward direction. According to Stoke’s Law, 
          6   r vF    

When the body attains terminal velocity v ,  

                        U + F = W 

  34
 r  g

3
  + 6   r v  t = 34

 r  g
3
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Or                6   r v  t = 34
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This is the expression for terminal velocity. 

Q5: Derive a formula for the work done by an ideal gas in an adiabatic process. 

Work done in an adiabatic expansion. Consider n moles of an ideal gas contained in a cylinder having 

insulating walls and provided with frictionless and insulating piston. Let P be the pressure of the gas. When 

the piston moves up through a small distance dx, the work done by the gas will be 

 dW = PAdx = p dV 

where A is the cross-sectional area of the piston and dV = Adx is the increase 

in the volume of the gas.  

Suppose the gas expands adiabatically and changes from the initial state 

1 1 1(P , , )V T to the final state 2 2 2(P , , )V T . The total work done by the gas will be 
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Q6: Derive an expression for the pressure due to an ideal gas 

 

Adiabatic walls  



 

 

Consider a cubical chamber of edge length  containing an ideal gas as shown. Let number of molecules 
per unit volume be n. Consider a molecule with velocity v with velocity components vx, vy and vz.  

Momentum of this molecule before hitting wall ABCD = mvx 

Since the collisions of an idea gas (according to KTG) are perfectly elastic so the 
momentum of the molecule after hitting the wall is xmv (negative sign because 

direction is opposite now) 

Therefore, change in momentum = x xmv mv   = x2mv  

So, momentum imparted to the wall = x2mv . 

Therefore, average momentum of that each molecule imparts to the wall is x2mv  

where xv is the average of velocity components of molecules in x direction 

No of molecules that can hit the wall in time t is 2
xnv t  , but since half of these molecules are moving 

away from the wall. Therefore, number of molecules that will actually hit the wall in time t  is 2
x

1
nv t

2
   . 

So, total momentum imparted to wall in time t is 2 2 2
x x x

1
nv t 2mv mnv t

2
      

Therefore, force exerted on the wall = 
2 2

2 2x
x

mnv t
mnv

t





   

Therefore, pressure exerted by x component, Px = 
2 2

2 2 2x
x x2

mnvForce
mnv mnv

Area
  




. Since the velocity of 

gas in all directions should be same due to its random motion, therefore, 2 2 2
x y zv v v   

Since 2 2 2 2
x y zv v v v    so we get 2 2 2 2

x x

1
v 3v v v

3
    

Therefore, we get P = 21
mnv

3
. Since mn = ρ (density of gas), therefore  

21
P v

3
   

 

Q7: Discuss the formation of standing waves in a string fixed at both ends and the different modes 
of vibrations 

Or 

Discuss the formation of harmonics in a stretched string. Show that in case of a stretched string in 
the four harmonics are in the ratio 1 : 2: 3 : 4. 



 

 

Standing waves on stretched strings 

Consider a wave travelling along the string given by  

1y A sin( t kx)    

After reflection from the rigid end the equation of the 
reflected wave is given by 

 

2

2

y A sin( t kx )

or

y A sin t kx

    

   

 

When these two waves superimpose, then the resultant 
wave is given by 

   1 2y y A sin t kx A sin t kx

t kx t kx t kx t kx
y A 2sin cos

2 2

kx 2 t
y 2A sin cos

2 2
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      
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As there is always a node at the end, so if length of the rope is L then we can say when x = L, y = 0  

0 2A sinkLsin t

sinkL sinn

kL n

2
L n

n
L

2

 
 

 


 





 

For each value of n, there is a corresponding value of  , so we can write 
n

2 L 2L
n or

n


   


 

The speed of transverse wave on a string of linear mass density m is given by 
T

v
m

  

So the frequency of vibration of the strings is  

n
n

v n T

2L m
  


 



 

 

For n = 1, 1

1 T
v (say)

2L m
    

This is the lowest frequency with which the string can vibrate and is called fundamental frequency or first 
harmonic.  

2

3

4

2 T
For n 2, 2 (first ovetone or second harmonic)

2L m

3 T
For n 3, 3 (second ovetone or third harmonic)

2L m

4 T
For n 2, 4 (third ovetone or fourth harmonic)

2L m
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    
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Position of nodes 

L 2L
x 0, , ,...........,L

n n
  

Position of antinodes 

L 3L 5L (2n 1)L
x , , ,.......,

2n 2n 2n 2n


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Discuss the formation of standing waves in open and closed organ pipes. 

First mode of vibration 

In the simplest mode of vibration, there is one node 
in the middle and to antinodes at the ends of the 
pipe. 

Here length of the pipe, 

1 1

1

1
1

L 2.
4 2
2L

Frequency of vibration,

v 1 P

2L

 
 

 


    

 

 

This is called fundamental frequency or first 
harmonic. 

Second mode of vibration 

Here antinodes at the open ends are separated by two nodes and one antinode. 



 

 

2
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2
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4
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v 1 P
Frequency, 2

L


   


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 

 

This frequency is called first overtone or second harmonic. 

Third mode of vibration 

Here the antinodes at the open ends are separated by three nodes and two antinodes. 

3
3

3
3

2L
L 6 or

4 3

v 3 P
Frequency, 3

2L


  


     

 

 

This frequency is called the second harmonic or third harmonic 

Similarly n
3n

v n P
n

2L


    

 
 

Hence the various frequencies of an open organ pipe are in the ratio 1:2:3:4….these are called harmonics. 

Closed organ pipes 

First mode of vibration 

In the simplest mode of vibration, there is 
only one node at the closed end and one 
antinode at the open end. If L is the 
length of the organ pipe, then 

1
1

1
1

L or 4L
4

Frequency,

v 1 P

4L


  


    

 

 

This is called first harmonic or 
fundamental frequency. 

Second mode of vibration 

In this mode of vibration, there is one 
node and one antinode between a node 
at the closed end and an antinode at the open end 



 

 

2
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2
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3 4L
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Frequency,

v 3 P
3

4L


  


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 

  

This frequency is called first overtone or third harmonic. 

Third mode of vibration 

In this mode of vibration, there are two nodes and two antinodes between a node at the closed end and an 
antinode at the open end. 

3
3

3
3

5 4L
L or

4 5
Frequency,

v 5 P
5

4L


  


    

 

 

Hence different frequencies produced in a closed organ pipe are in the ratio 1 : 3 : 5 : 7 …..i.e. only odd 
harmonics are present in a closed organ pipe.  

Q8: Derive an expression for excess pressure inside a liquid drop or soap bubble. 

Excess pressure inside a liquid drop. Consider a spherical liquid drop of radius R. Let   be the surface 
tension of the liquid. Due to its spherical shape, there is an excess pressure p inside the drop over that on 
outside. This excess pressure acts normally outwards. Let the radius of the drop increase from R to R + dR 
under the excess pressure p. 

    Initial surface area = 24 R  

    Final surface area =  

                                        

2 2 2

2

2

4 ( ) 4 ( 2  dR + dR )

4 8  

 is neglected as it is small.

R dR R R

R R dR

dR

 

 

  

   

 



 

 

Increase in surface area 

    = 2 24 8   - 4 R 8  dRR R dR R      

Work done in enlarging the drop 

            = Increase in surface energy 

            = Increase in surface area x Surface tension 

             = 8  dRR   

But work done = Force x Distance 

                           = Pressure x Area x Distance 

                           = p   24 R    dR 

Hence,    p   24 R    dR = 8  dRR   

  Excess Pressure,  

                                
2

p
R


  

Excess pressure inside a soap bubble. Proceeding as in the case of a liquid drop in the above derivation, 
we obtain 

        Increase in surface area = 8  R dR  

        But a soap bubble has air both inside and outside, so it has two free surfaces 

                Effective increase in surface area 

                       = 2   8  R dR = 16  R dR  

               Work done in enlarging the soap bubble 

                                   = Increase in surface energy 

                                   = Increase in surface area    Surface tension 

                                   =  16  R dR   

But, Work done = Force x Distance 

                              = p   24 R    dR 

Hence 

               p   24 R    dR =  16  R dR   



 

 

or                                    p = 
4

R


 

Q9: Derive equation of continuity. 

Equation of continuity 

Consider a non-viscous and incompressible liquid flowing steadily between the sections A and B of a pipe of varying 

cross section, Let 1a  be the area of cross section, 1v fluid velocity, 1  fluid density at section A; and the values of 

corresponding quantities at section B be 2 2 2a ,v and  . 

As m = volume x density 

= area of cross section x length x density\ 

 

Therefore, mass of fluid that flows through section A in time t , 

1 1 1 1m a v t    

Mass of fluid that flows through section B in time t , 

2 2 2 2m a v t    

By conservation of mass 

1 2m m  

1 1 1 2 2 2a v t a v t      

As fluid is incompressible, 1 2    and hence 

1 1 2 2a v a v  

Q10: Describe the construction and working of a venturimeter. 

Venturimeter. It is a device used to measure the rate of flow of a liquid through a pipe. It is an application of 
Bernoulli’s principle. It is also called flow meter or venturi tube. 



 

 

Construction. It consists of a horizontal tube having wider opening of cross-section a1 and a narrow neck of 
cross-section a2. These two regions of the horizontal tube are connected to a manometer, containing a liquid 
of density σ. 

 

Working. Let the liquid velocities be v1 and v2 at the wider and the narrow portions. Let P1 and P2 be the 
liquid pressures at these regions. By the equation of continuity, 

 a1 v1 = a2 v2   or    1 2

2 1

a v

a v
  

If the liquid has density ρ and is flowing horizontally, then from Bernoulli’s equation, 

    2
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If h is the height difference in the two arms of the manometer tube, then  
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2
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Q11: Derive and expression for work done in an isothermal process by an ideal gas. 

Work done in an isothermal expansion. Consider n moles of an ideal gas 

contained in a cylinder having conducting walls and provided with frictionless 

and movable piston, as shown in the figure below. Let P be the pressure of the 

gas. 

Work done by the gas when the piston moves up through a small distance dx 

is given by 

         dW = P A dx = PdV 

where A is the cross-sectional area of the piston and dV = Adx, is the small increase in the volume of the 

gas. Suppose the gas expands isothermally from initial state 1 1( , )P V to the final state 2 2( , )P V . The total 

amount of work done will be 
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V
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V
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For n moles of a gas, PV = nRT   or   
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P
V
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Q12: Describe the construction and working of heat engine and derive an expression for its 

efficiency. 



 

 

Heat Engine is a device which converts heat energy into mechanical energy. It has three main parts 

1. Source: It is a hot reservoir from which a working substance absorbs heat to perform work. It is 

maintained at a constant temperature T1. 

2. Working substance: The substance which absorbs heat from source and performs work is called 

working substance. For example, a mixture of fuel vapour and air in a gasoline or diesel engine or 

steam in a steam engine are the working substances. 

3. Sink: It is the cold reservoir in which the extra heat is rejected after doing work. It is maintained at a 

constant temperature T2. 

Let heat absorbed from source be Q1 and heat rejected into the sink be Q2 after performing W work. 
Then 

1 2W Q Q   

 

 

 

 

 

 

Efficiency of engine: It the fraction or percentage of energy absorbed which is converted into output 
mechanical work. It is given by  

1 2 2

1 1 1

Q Q QW
1

Q Q Q


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Percentage efficiency is given by 2
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Q
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Q T

Q T
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Q13: Derive equation for plane progressive wave. 

Suppose a simple harmonic wave starts from the origin O and travels along the positive direction of X-axis 

with speed v. Let the time be measured from the instant when the particle at the origin O is passing through 



 

 

the mean position. Taking the initial phase of the particle to be zero, the displacement of the particle at the 

origin O (x = 0) at any instant t is given by 

y(0,t) A sin t    …. (i) 

Where T is the periodic time and A is the amplitude of the wave. 

Consider a particle P on x axis at a distance x from O. The disturbance starting from the origin O will reach 

P in 
x

v
 seconds later than the particle at O. Therefore 

 

Displacement of the particle at P at any instant t = Displacement of the particle at O at a 
x

v
 seconds earlier 

= Displacement of the particle at O at time 
x

t
v

  
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Thus the displacement of the particle at P at any time t can be obtained by replacing t by 
x

t
v

  
 

in 

equation (i) 

  x
y x,t A sin t A sin t x

v v

2 2
But k

v v
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  
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The quantity 
2

k





is called angular wave number. Hence, 

   y x,t A sin t kx    

Q14: Derive Newton’s formula for velocity of sound in air and discuss Laplace’s correction. 



 

 

Newton’s formula 

Newton assumed that the sound waves travel through air under isothermal conditions. He argued that the 
small amount of heat produced in a compression is rapidly conducted to the surrounding rarefaction where 
slight cooling is produced. Thus the temperature of the gas remains constant. 

For isothermal change 

PV = constant 

Differentiating both side, we get 

PdV VdP 0

PdV VdP

dPV
P B

dV

 
  

   

 

Where B is the bulk modulus of the gas. 

Now, since velocity v of a longitudinal wave in medium is given by 
B

v 


, where  is the density of the 

medium, therefore  

P
v 


= 1101325

v 280 ms
1.293

   

Which is incorrect having an error of 16% 

Laplace’s correction 

Laplace pointed out that the sound travels through a gas under adiabatic conditions not under isothermal 
conditions because 

 Compression and rarefactions are so rapid that there is no time for exchange of heat. 
 Air is an insulator so free exchange of heat is not possible. 

So, applying the equation of state for an adiabatic process, we get 

1

PV K

P V dV V dP 0

V
P dV V dP 0

V
P

V dV dP 0
V

dPV
P B

dV


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






   

   

     

    

 



 

 

1 1P
v 1.4 280 ms 331.3ms 

    


, which the correct value of velocity of sound in air. 

Other important questions 

1. What are beats? Derive an expression for beat frequency and beat interval. 
2. Derive an expression for pressure at a depth h. 
3. State and prove Torricelli’s law. 
4. What is mean free path? Derive an expression for it. 
5. What is Doppler’s effect? Derive an expression for apparent frequency heard by listener 
6. Derive an expression for displacement, velocity, acceleration, energy and time period of a particle 

executing SHM. 
7. Derive an expression for time period of a simple pendulum.  

 

 

 


