
 

 

MECHANICAL PROPERTIES OF FLUIDS: ALL DERIVATIONS 

Variation of pressure with depth 

Imagine a cylindrical element of the liquid of cross-sectional area A and height h. Let 
P1 and P2 be the liquid pressures at its top point 1 and bottom point 2 respectively. 

 

Various force acting on it in the vertical direction are: 

1. Force due to the liquid pressure at the top,  
                 F1 = P1 A, acting downwards 

2. Force due to the liquid pressure at the bottom,  
                 F2 = P2 A, acting upwards 

3. Weight of the liquid cylinder acting downwards, 
                 W = Mass   g = Volume   density   g 

                                    =Ahpg 
                where p is the density of the liquid. 

              As the liquid cylinder is in equilibrium, 

              Net downward force = Net upward force 

    or                            F1 + W = F2 

    or                            F2 – F1 = W 

    or                            P2 A - P1 A = Ahρg 

    or                            P2 - P1 = hρg 

If we shift the point 1 to the liquid surface, which is open to the atmosphere, then we 
can replace P1 by atmospheric pressure Pa and P2 by P in the above equation and we 
get  

                                   P – Pa = hρg  

                                         P = Pa + hρg 



 

 

The excess pressure P – Pa at depth h is called a gauge pressure at that point. 

Hydraulic lift 

Hydraulic lift is used to lift heavy objects. It works on the principle of Pascal’s law. 

 

It has a chamber having two openings as shown. This chamber contains an ideal fluid. 
This chamber has two openings fitted with piston one having smaller area of cross 
section and other having larger area of cross section. The object to be lifted is placed 
on piston with large area of cross-section and a force is applied on the piston with 
smaller area of cross-section.  

Suppose a force f be applied on smaller piston having area of cross-section a. Due to 
this pressure changes at this cross-section and according to Pascal’s law, this 
pressure gets transmitted equally to piston with larger area of cross-section. If A is the 
area of cross-section of larger piston and F be the force exerted by liquid on this piston, 
then according to Pascal’s law 

f F

a A
a A

F f




 
  

This force is enough to lift the heavy object.   

Pascal’s law 

According to Pascal’s law a change in pressure applied to an enclosed 
incompressible fluid is transmitted undiminished to every point of the fluid and the 
walls of the containing vessel. 



 

 

 

As shown in figure, consider a small element ABC-DEF in the form of a right angled 
prism in the interior of a fluid at rest. The element is so small that all its parts can be 
assumed to be at same depth from the liquid surface and, therefore, the effect of 
gravity is same for all of its points. 

Suppose the fluid exerts pressures Pa, Pb and Pc on 
the faces BEFC, ADFC and ADEB respectively of this 
element and corresponding normal forces on these 
faces are Fa, Fb and Fc. Let Aa, Ab and Ac be the 
areas of the three faces. In right ABC, let ACB θ   . 

As this element is in equilibrium with remaining fluid, 
the forces should balance in all directions. 

Along horizontal direction  

b c

b a

F sinθ F

F cosθ F




 

From the geometry of the figure, we get  

b c

b a

A sinθ A

A cosθ A




 

From above equations, we get 
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Stoke’s law 

According to Stoke’s law, the backward viscous force acting on a small spherical 
body of radius r moving with uniform velocity v through fluid of viscosity η is given by  

F 6πηrv  

Derivation of Stoke’s law 

The viscous force F acting on a sphere moving through a fluid may depend on 

i. Coefficient of viscosity η of the fluid 
ii. Radius r of the spherical body 

iii. Velocity v of the body 

Let  

a b cF kη r v ........(i)

where k is a dimensionless constant


 

2 1 1

1

[F] [MLT ], η [ML T ]

[r] [L], v [LT ]

  



 

 
 

Substituting these dimensions in eq. (i), we get 

2 1 1 a b 1 c[MLT ] [ML T ] [L] [LT ]     

Equating the powers M, L and T on both sides, we get 

a 1

a b c 1

a c 2


   

   
 

On solving we get a = b = c = 1 

For a small sphere k is found to be 6π  

Hence F 6πηrv  



 

 

Terminal Velocity 

Terminal Velocity. The maximum constant velocity acquired by a body while falling 
through a viscous medium is called as Terminal Velocity. 

 

Expression for terminal velocity. Consider a spherical body of radius r falling 
through a viscous liquid of density of the body. 

   As the body falls, the various forces acting on the body are: 

1. Weight of the body acting vertically downwards. 

         34
W mg πr ρg

3
   

2. Upward thrust equal to the weight of the liquid displaced. 

         3
B

4
F πr σg

3
  

3. Force of viscosity acting in the upward direction. According to Stoke’s Law, 
         vF 6πηrv  

When the body attains terminal velocity v ,  
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Or                         
 2

t

2r ρ σ
v g

9η


  

This is the expression for terminal velocity. 

 



 

 

Critical velocity 

“The critical velocity of a liquid is that limiting value of its velocity of flow up-to which 
the flow is streamlined and above which the flow becomes turbulent.” 

The critical velocity vc of a liquid flowing through a tube depends upon  

i. Coefficient of viscosity of liquid (η) 
ii. Density of liquid (ρ) 

iii. Diameter of the tube (D) 

Let a b c
cv kη ρ D  

Where k is a dimensionless constant. Writing the above equation in dimension form, 
we get 
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o 1 a b a 3b c a

[M LT ] [ML T ] [ML ] [L]

[M LT ] [M L T ]

   

     




 

Equating powers of M, L and T we get 
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Equation of continuity 

Consider a non-viscous and incompressible liquid flowing steadily between the 
sections A and B of a pipe of varying cross section, Let 1a  be the area of cross section, 

1v fluid velocity, 1  fluid density at section A; and the values of corresponding 

quantities at section B be 2 2 2a ,v and  . 

 



 

 

As m = volume x density 

= area of cross section x length x density 

Therefore, mass of fluid that flows through section A in time t , 

1 1 1 1m a v t    

Mass of fluid that flows through section B in time t , 

2 2 2 2m a v t    

By conservation of mass 

1 2m m  

1 1 1 2 2 2a v t a v t      

As fluid is incompressible, 1 2    and hence 

1 1 2 2a v a v  

Bernoulli’s Principle 

Bernoulli’s Principle states that the sum of pressure energy, kinetic energy and 
potential energy per unit volume of an incompressible, non-viscous fluid in a 
streamlined irrotational flow remains constant along a streamline. 

Mathematically, it can be expressed as  

21
P ρv ρgh constant

2
    

Proof. Consider a non-viscous and incompressible fluid flowing steadily flowing 
through a pipe of varying cross-section. Let a1 be the area of cross-section at MN, v1 
the fluid velocity, P1 the fluid pressure, and h1 the mean height above the ground level. 
Let a2, v2, P2 and h2 be the values of the corresponding quantities at M’N’.  

 



 

 

Let ρ be the density of the fluid. Let the part MNM’N’ of the liquid moves to PQP’Q’ in 
time t  

As liquid is incompressible so mass of liquid in MNPQ part and M’N’P’Q’ is same which 
is given by  

m = Volume x Density = Area of cross-section x length x density 

or    1 1 2 2m a v tp a v tp     

K.E of the fluid = K.E at B – K.E at A 

or    1 1 2 2a v a v  

            Change in K.E 

             =    2 2 2 2
2 1 1 1 2 1

1 1
m v v a v tρ v v

2 2
     

Change in P.E of the fluid 

  = P.E at B – P.E at A 

  =     2 2
2 1 1 1 2 1mg h h a v tρg v v     

Net work done on the fluid 

       = work done on the fluid A – Work done by the fluid at B 

       
 

1 1 1 2 2 2

1 1 1 2

Pa v t P a v t

a v P P

   

 
 

By conservation of energy, 

Net work done on the fluid 

    = change in K.E of the fluid + change in P.E of the fluid 

     2 2
1 1 1 2 1 1 2 1 1 1 2 1

1
a v t P P a v tρ v v a v tρg h h

2
          

Dividing both sides by 1 1a v t , we get 
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Surface energy 

Work done to increase the area of a liquid surface against the force of surface 
tension gets stored in the surface in the form of surface energy. 

Consider a metallic frame with a movable arm of length  . Now, this frame is dipped 
in a liquid solution so a soap film is formed on it as shown. Now, we are applying a 
force F against the force of surface tension and moving the arm through a distance 
x, so work done is  

W F x    

Since 
F

S F S 2
2

    


 

Therefore  

W S 2 x

W S ΔA

  
  


 

This work is stored in the liquid surface in the 
form of surface energy. 

Hence 
Surface energy Surface tension increase in area   

 

Excess pressure inside a liquid drop 

Consider a spherical liquid drop of radius R. Let   be the surface tension of the liquid. Due 
to its spherical shape, there is an excess pressure p inside the drop over that on outside. This 
excess pressure acts normally outwards. Let the radius of the drop increase from R to R + dR 
under the excess pressure p. 

    Initial surface area = 24πR  

    Final surface area = 

  



 

 

                                        

2 2 2

2

2

4π(R+dR)  = 4π(R +2RdR + dR )

= 4πR + 8πR dR

dR  is neglected as it is small.

 

 

Increase in surface area 

    = 2 24πR +8πR dR - 4πR = 8πR dR  

Work done in enlarging the drop 

            = Increase in surface energy 

            = Increase in surface area   Surface tension 

             = 8πR dRσ  

But work done = Force   Distance 

                           = Pressure   Area   Distance 

                           = p   24 R    dR 

Hence,    p   24πR    dR = 8πR dRσ  

  Excess Pressure,  

                                
2σ

p = 
R

 

Excess pressure inside a soap bubble 

Proceeding as in the case of a liquid drop in the above derivation, we obtain 

        Increase in surface area = 8πR dR  

        But a soap bubble has air both inside and outside, so it has two free surfaces 

                 Effective increase in surface area 

                       = 2   8πR dR = 16 πR dR  

               Work done in enlarging the soap bubble 

                                   = Increase in surface energy 

                                   = Increase in surface area x Surface tension 

                                   =  16 πR dR   

But, Work done = Force x Distance 

                              = p   24πR    dR 



 

 

Hence 

               p 24πR dR =  16 πR dR   

or                                     
4

p 
R


 

 

Ascent formula 

Consider a capillary tube of radius r dipped in a liquid of surface tension S and 

density ρ. Suppose the liquid wets the sides of the tube. Then its meniscus will be 

concave. The shape of the meniscus of water will be nearly spherical if the capillary 

tube is of sufficiently 

narrow bore. 

As the pressure is greater 

on the concave side of a 

liquid surface, so excess of 

pressure at a point A just 

above the meniscus 

compared to point B just 

below the meniscus 

2S
p

R
  

Where R is the radius of curvature of meniscus. If θ is the angle of contact then from 

right angled triangle shown in figure, we have  

r
cosθ

R
r

or R
cosθ
2Scosθ

p
r





 

 



 

 

Due this excess pressure p, the liquid rises in the capillary tube t height h when the 

hydrostatic pressure exerted by the liquid column becomes equal to the excess 

pressure p. Therefore, at equilibrium, we have 

p hρg

2Scosθ
or hρg

r

2Scosθ
or p

rρg




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