
 

 

Oscillations all derivations 

A body executing SHM can be compared with a body doing circular motion having radius A 
as shown. Let this body covers an angle θ  in time after starting from X (A,0) at t = 0. 
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This is the displacement equation of a body amplitude of whose 
motion is A and angular frequency is ω  
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Restoring force 
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Kinetic energy in SHM 
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Potential energy in SHM 
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Total energy in SHM 
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Time period of simple pendulum 
 
Consider a pendulum of length L connected to a bob of mass m as shown. Now from figure it 
is clear that mgsinθ provides the necessary restoring force. Therefore 
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Time period of spring 

Horizontal spring 

 

In this spring mass system shown in figure above, time period of oscillation is given by  
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Vertical spring 

When a block is connected to a vertical spring, it 
extends by an amount  so that the restoring force 
balances the weight of the block. Therefore,  
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Now, when this spring is pulled by a distance y, it starts doing SHM with time period T which 
is given by  
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Combination of springs 

Series combination 

Consider two springs of spring constants 1 2k and k connected in series as shown. Now, 

when this system oscillates, extensions in springs be 1 2y and y , then   

1 1 2 2F k y k y     

1 2

1 1

1 2

1 2

1 2

Total extension is

y y y

F F
y

k k

1 1
y F

k k

k k
F y

k k

 

   

 
    

 
 

    

 

1 2

1 2

1 2

Comparing it with F kx, we get
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Parallel combination 

Consider two springs of spring constants 1 2k and k

connected in series as shown. Now, when this system 
oscillates, extensions in springs be y and restoring forces be 

F1 and F2, then 
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