
### **1** Basic Proportionality Theorem

**Statement:** If a line is drawn parallel to one side of a triangle, it divides the other two sides proportionally.

Mathematical Form:

$$\frac{AD}{DB} = \frac{AE}{EC}$$

**Example:** In  $\triangle ABC$ , if *DE* is parallel to *BC*, then:



**Converse of Basic Proportionality Theorem:** If a line divides two sides of a triangle proportionally, then it is parallel to the third side.

# 2 What are Similar Triangles?

Two triangles are said to be similar if their corresponding angles are equal and their corresponding sides are in proportion.

Conditions for similarity:

- Corresponding angles are equal.
- Corresponding sides are proportional.

**Example:** If  $\triangle ABC \sim \triangle DEF$ , then:

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$

# 3 Criteria for Similarity of Triangles

#### 3.1 SSS (Side-Side-Side) Similarity

If the corresponding sides of two triangles are in proportion, then the triangles are similar. **Example:** 

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$$

### 3.2 SAS (Side-Angle-Side) Similarity

If one angle of a triangle is equal to one angle of another triangle and the sides including these angles are in proportion, then the triangles are similar.

Example:

$$\frac{AB}{DE} = \frac{BC}{EF}, \quad \angle B = \angle E$$

### 3.3 AAA or AA (Angle-Angle) Similarity

If two angles of a triangle are equal to two angles of another triangle, then the triangles are similar. **Example:** If  $\angle A = \angle D$  and  $\angle B = \angle E$ , then  $\triangle ABC \sim \triangle DEF$ .

#### 3.4 Example Problems

1. Show that triangles with sides in proportion are similar.

Given  $\triangle ABC$  and  $\triangle PQR$ ,  $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$ 

Since the sides are proportional,  $\triangle ABC \sim \triangle PQR$ 

2. Find the missing side if  $\triangle XYZ \sim \triangle ABC$  and AB = 6, BC = 9, AC = 12, XY = 4, YZ = 6.

$$\frac{AB}{XY} = \frac{BC}{YZ}$$
$$\frac{6}{4} = \frac{9}{6}$$

Therefore, the missing side is  $\frac{12}{8}$