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Motion in a Straight Line

1 Equations of Motion using Calculus Method

In kinematics, the three equations of motion describe the relationship between velocity, acceler-
ation, time, and displacement for an object moving under uniform acceleration. These equations
can be derived using differential and integral calculus.

1.1 First Equation of Motion: v = u+ at

Acceleration is defined as the rate of change of velocity:

a =
dv

dt

Rearranging:

dv = a dt

Integrating both sides from initial velocity (u) to final velocity (v) over the time interval 0
to t: ∫ v

u
dv =

∫ t

0
a dt

Solving the integrals:

[v]vu = a[t]t0

v − u = at

v = u+ at

Explanation: The first equation of motion states that the final velocity (v) is equal to
the initial velocity (u) plus the product of acceleration (a) and time (t).
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1.2 Second Equation of Motion: s = ut+ 1
2
at2

Velocity is the rate of change of displacement:

v =
ds

dt

Substituting v = u+ at:

ds

dt
= u+ at

Rearranging:

ds = (u+ at) dt

Integrating both sides from displacement 0 to s over the time interval 0 to t:∫ s

0
ds =

∫ t

0
(u+ at) dt

Solving the integrals:

[s]s0 =

[
ut+

1

2
at2

]t
0

s = ut+
1

2
at2

Explanation: The second equation of motion expresses the displacement (s) in terms
of initial velocity (u), acceleration (a), and time (t).

1.3 Third Equation of Motion: v2 = u2 + 2as

We use the chain rule:

a =
dv

dt
=

dv

ds
· ds
dt

= v
dv

ds

Rearranging:

a ds = v dv

Integrating both sides from s = 0 to s = s and v = u to v = v:∫ v

u
v dv =

∫ s

0
a ds

Solving the integrals: [
v2

2

]v
u

= a[s]s0

v2

2
− u2

2
= as

Multiplying both sides by 2:

v2 = u2 + 2as
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Explanation: The third equation of motion relates the final velocity (v) to initial ve-
locity (u), acceleration (a), and displacement (s) without involving time.

These derivations confirm the three fundamental kinematic equations using the calculus
approach.

Motion in a Plane

2 Horizontal Projectile Motion

In horizontal projectile motion, a body is projected with an initial velocity u in the horizontal
direction from a height H. The motion can be analyzed as a combination of two independent
components:

1. Horizontal motion: Uniform motion with constant velocity u.

2. Vertical motion: Uniformly accelerated motion under the influence of gravity g (taken
as negative for downward motion).

Figure 1: Horizontal projectile motion
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Theory:

• The horizontal velocity remains constant because there is no acceleration in the horizontal
direction.

• The vertical motion is influenced only by gravity, leading to an acceleration g.

• The trajectory of the body is a parabola, as the horizontal and vertical motions combine
to form a curved path.

2.1 Cartesian Equation of Trajectory for Horizontal Projectile Motion

To derive the trajectory equation of the horizontal projectile, we eliminate time t from the
horizontal and vertical motion equations.

2.1.1 Step 1: Horizontal Displacement Equation

The horizontal displacement is given by:

x = ut

Solving for t:

t =
x

u

2.1.2 Step 2: Vertical Displacement Equation

The vertical displacement is:

y = −1

2
gt2

Substituting t = x
u into the vertical motion equation:

y = −1

2
g
(x
u

)2

y = − g

2u2
x2

2.1.3 Final Trajectory Equation

The Cartesian equation of the trajectory is:

y = − g

2u2
x2

This equation represents a parabolic trajectory, confirming that the horizontal projectile
follows a parabolic path.

2.2 Time of Flight (T )

The time of flight is the total time taken by the body to hit the ground. This depends only
on the vertical motion.

From the vertical displacement equation:

y = −H
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Substituting the equation of motion:

y = −1

2
gT 2

Equating:

−H = −1

2
gT 2

Rearranging:

T 2 =
2H

g

Taking the square root on both sides:

T =

√
2H

g

T =

√
2H

g

Thus, the time of flight depends on the initial height (H) and the acceleration due to gravity
(g), but not on the initial velocity (u).

2.3 Horizontal Range (R)

The horizontal range is the distance covered in the horizontal direction before the body hits
the ground.

Using horizontal motion:

x = ut

For the total flight time:

R = uT

Substituting T =
√

2H
g :

R = u

√
2H

g

R = u

√
2H

g

Thus, the horizontal range depends on the initial velocity (u) and the initial height (H),
but not on the gravitational acceleration (g) alone.
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2.4 Velocity at Any Instant (v⃗)

At any time t, the velocity has both horizontal and vertical components.
Horizontal Component:

vx = u

Vertical Component:
From vertical motion:

vy = −gt

The velocity vector is:

v⃗ = vxî+ vy ĵ

Substituting the components:

v⃗ = uî+ (−gt)ĵ

Magnitude of Velocity:
The magnitude of velocity is given by:

v =
√

v2x + v2y

Substituting the components:

v =
√

u2 + (−gt)2

v =
√
u2 + g2t2

Thus, the velocity at any instant depends on both the initial horizontal velocity (u) and the
vertical component introduced by gravity (gt).

3 Angular Projectile Motion

A body is projected from the ground with an initial velocity u at an angle θ with the
horizontal. The motion can be analyzed using horizontal and vertical components:

• The horizontal velocity component is ux = u cos θ.

• The vertical velocity component is uy = u sin θ.
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• Acceleration due to gravity g acts downward (negative direction).

Figure 2: Angular projectile motion

3.1 Cartesian Equation of Trajectory

To derive the trajectory equation, we eliminate t from the horizontal and vertical motion equa-
tions.

Step 1: Horizontal Motion Equation

x = uxt = (u cos θ)t

Solving for t:

t =
x

u cos θ

Step 2: Vertical Motion Equation

y = uyt−
1

2
gt2

Substituting uy = u sin θ:

y = (u sin θ)t− 1

2
gt2

Step 3: Eliminating t

Substituting t = x
u cos θ :

y = (u sin θ)
x

u cos θ
− 1

2
g
( x

u cos θ

)2

Simplifying:

y = x tan θ − g

2u2 cos2 θ
x2

Final Cartesian Equation of Trajectory:

y = x tan θ − g

2u2 cos2 θ
x2

This equation represents a **parabolic trajectory**.
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3.2 Time of Flight (T )

The time of flight is the total time for which the projectile remains in the air.
Using the vertical motion equation:

y = uyt−
1

2
gt2

At the highest point and when the projectile lands, y = 0:

0 = (u sin θ)T − 1

2
gT 2

Rearranging:

T

(
u sin θ − 1

2
gT

)
= 0

Solving for T :

T =
2u sin θ

g

Final Time of Flight:

T =
2u sin θ

g

3.3 Maximum Height Attained (H)

At maximum height, the vertical velocity becomes zero (vy = 0). Using:

v2y = u2y − 2gH

Substituting uy = u sin θ and vy = 0:

0 = (u sin θ)2 − 2gH

Solving for H:

H =
u2 sin2 θ

2g

Final Maximum Height:

H =
u2 sin2 θ

2g

3.4 Horizontal Range (R)

The horizontal range is the total horizontal distance covered during the flight. It is given by:

R = uxT

Substituting ux = u cos θ and T = 2u sin θ
g :

R = (u cos θ)× 2u sin θ

g

Using the identity 2 sin θ cos θ = sin 2θ:
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R =
u2 sin 2θ

g

Final Horizontal Range:

R =
u2 sin 2θ

g

3.5 Velocity at Any Instant (v⃗)

The velocity at any instant t consists of both horizontal and vertical components.
Horizontal Component:

vx = u cos θ

Vertical Component:
vy = u sin θ − gt

Velocity Vector:
v⃗ = vxî+ vy ĵ

Substituting values:

v⃗ = u cos θî+ (u sin θ − gt)ĵ

Magnitude of Velocity:

v =
√

v2x + v2y

Substituting:

v =
√

u2 cos2 θ + (u sin θ − gt)2

Final Magnitude of Velocity:

v =
√

u2 + g2t2 − 2ugt sin θ

This formula represents the velocity magnitude at any instant during projectile motion.

Laws of motion

4 Banking of Roads

A vehicle moving on a banked road experiences both normal reaction and friction, which
together provide the necessary centripetal force.
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4.1 Forces Acting on the Vehicle

The forces acting on a car of mass m moving on a banked curve of radius r are:

• Weight (mg) acting vertically downward.

• Normal Reaction (N) exerted by the road, acting perpendicular to the surface.

• Friction Force (f) between the tires and the road surface, which acts along the inclined
plane.

4.2 Resolving Forces into Components

The forces are resolved into horizontal and vertical components:

• Vertical direction (force balance equation):

mg + f sin θ = N cos θ

mg = N cos θ − f sin θ

• Horizontal direction (providing centripetal force):

N sin θ + f cos θ =
mv2

r

Figure 3: Banking of roads with friction

4.3 Derivation of Maximum Speed for Safe Turn

Dividing the centripetal force equation by the vertical force equation:

N sin θ + f cos θ

N cos θ − f sin θ
=

mv2

rmg

v2

rg
=

sin θ + f
N cos θ

cos θ − f
N sin θ

Since f
N = µ (coefficient of friction), we get:
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v2

rg
=

sin θ + µ cos θ

cos θ − µ sin θ

v =

√
rg(tan θ + µ)

1− µ tan θ

Final Condition for Safe Turning with Banking and Friction

The maximum speed v at which a vehicle can take a turn safely on a banked road with
friction is:

v =

√
rg(tan θ + µ)

1− µ tan θ

where:

• r = Radius of the turn.

• g = Acceleration due to gravity.

• θ = Banking angle of the road.

• µ = Coefficient of friction between the tires and the road.

Work Energy Power

5 Velocities After One-Dimensional Elastic Collision

Consider two bodies of masses m1 and m2 moving along the same straight line with initial
velocities u1 and u2, respectively. After an elastic collision, their velocities change to v1 and v2.

According to the law of conservation of momentum, the total momentum before and after
the collision remains the same:

m1u1 +m2u2 = m1v1 +m2v2

Rearranging,

m1(u1 − v1) = m2(v2 − u2) ...(i)

Since the collision is elastic, the total kinetic energy is also conserved:
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Figure 4: Elastic collision in 1 dimension

1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2

Multiplying the entire equation by 2 to eliminate fractions:

m1u
2
1 +m2u

2
2 = m1v

2
1 +m2v

2
2

Rearranging,

m1(u
2
1 − v21) = m2(v

2
2 − u22) ...(ii)

We can factorize equation (ii) using the identity a2 − b2 = (a− b)(a+ b):

m1(u1 − v1)(u1 + v1) = m2(v2 − u2)(v2 + u2)

Dividing equation (ii) by equation (i), we get:

(u1 − v1)(u1 + v1)

(u1 − v1)
=

(v2 − u2)(v2 + u2)

(v2 − u2)

Canceling common terms:

u1 + v1 = v2 + u2

Rearranging:

u1 − u2 = v2 − v1 ...(iii)

This shows that the relative velocity of approach before the collision is equal to the
relative velocity of separation after the collision.

The coefficient of restitution (e) is given by the formula:

e =
relative velocity of separation

relative velocity of approach

For an elastic collision, e = 1, so:

e =
v2 − v1
u1 − u2

From the relative velocity condition:

v2 = u1 − u2 + v1

Substituting this into the momentum conservation equation:

m1u1 +m2u2 = m1v1 +m2(u1 − u2 + v1)

Expanding:
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m1u1 +m2u2 = m1v1 +m2u1 −m2u2 +m2v1

Rearranging:

(m1 −m2)u1 + 2m2u2 = (m1 +m2)v1

Solving for v1:

v1 =
(m1 −m2)u1
(m1 +m2)

+
2m2u2

(m1 +m2)

Similarly, solving for v2:

v2 =
(m2 −m1)u2
(m1 +m2)

+
2m1u1

(m1 +m2)

Thus, these equations give the final velocities of the two bodies after a one-dimensional
perfectly elastic collision.

System of particles and rotational motion

6 Position Vector of the Center of Mass of a Two-Particle Sys-
tem

Consider a system of two particles P1 and P2 with masses m1 and m2, respectively. Let
their position vectors at any instant t be r⃗1 and r⃗2, measured with respect to the origin O, as
shown in the figure.

The external and internal forces acting on the particles are:

- f⃗1, f⃗2 → external forces on particles - F⃗12, F⃗21 → internal forces due to mutual interaction

According to Newton’s Second Law, the total force acting on the system is:

f⃗1 + f⃗2 + F⃗12 + F⃗21 =
d

dt
(m1v⃗1 +m2v⃗2)

Since velocity is the time derivative of position,

v⃗1 =
dr⃗1
dt

, v⃗2 =
dr⃗2
dt

Thus, the equation becomes:
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Figure 5: Centre of mass of a two particle system

f⃗1 + f⃗2 + F⃗12 + F⃗21 =
d

dt

(
m1

dr⃗1
dt

+m2
dr⃗2
dt

)
By Newton’s Third Law:

F⃗12 = −F⃗21

So the internal forces cancel out, and we are left with:

f⃗1 + f⃗2 =
d2

dt2
(m1r⃗1 +m2r⃗2)

Multiplying and dividing the right-hand side by m1 +m2:

f⃗1 + f⃗2 = (m1 +m2)
d2

dt2

(
m1r⃗1 +m2r⃗2
m1 +m2

)
Letting F⃗ = f⃗1 + f⃗2, we get:

F⃗ = (m1 +m2)
d2

dt2
R⃗CM

Comparing this equation with:

F⃗ = (m1 +m2)
d2

dt2
R⃗CM

we obtain the position vector of the center of mass:

R⃗CM =
m1r⃗1 +m2r⃗2
m1 +m2

6.1 Generalizing for an n-Particle System

For a system of n particles, the center of mass position vector is given by:

R⃗CM =
m1r⃗1 +m2r⃗2 +m3r⃗3 + · · ·+mnr⃗n

m1 +m2 +m3 + · · ·+mn

This equation shows that the center of mass is the weighted mean of the position vectors of
all particles.

Gravitation
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7 Variation of Acceleration due to Gravity with Height

Figure 6: Variation of g with height

The acceleration due to gravity at the surface of the Earth is given by:

g =
GM

R2

At a height h above the surface of the Earth, the acceleration due to gravity is:

g′ =
GM

(R+ h)2

7.1 Derivation of the Expression

Dividing g′ by g:

g′

g
=

GM
(R+h)2

GM
R2

g′

g
=

R2

(R+ h)2
(Equation 1)

Rewriting in a simplified form:
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g′

g
=

R2

R2(1 + h
R)

2

g′

g
=

1

(1 + h
R)

2

7.2 Binomial Approximation for Small h

For h ≪ R, we use the binomial approximation:

(1 + x)n ≈ 1 + nx for x ≪ 1

Applying n = −2 and x = h
R : (

1 +
h

R

)−2

≈ 1− 2h

R

Thus,

g′

g
≈ 1− 2h

R

7.3 Percentage Decrease in Gravity

Rearranging:

1− g′

g
=

2h

R

g − g′

g
× 100 =

2h

R
× 100

7.4 Final Expression for Percentage Decrease

Percentage decrease in g =
2h

R
× 100

Thus, the acceleration due to gravity decreases as height increases, and for small heights,
the decrease is approximately linear with height.

8 Variation of Acceleration due to Gravity with Depth

If a body is taken to a depth d below the surface of the Earth, the acceleration due to gravity
at that depth is given by:

g′ =
GM ′

(R− d)2

where M ′ is the mass of the spherical part of the Earth of radius (R− d).
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Figure 7: Variation of g with depth

8.1 Derivation of the Expression

Let the Earth be a uniform sphere of density ρ. The total mass of the Earth is:

M =
4

3
πR3ρ

Thus, acceleration due to gravity at the surface of the Earth is:

g =
G

R2
× 4

3
πR3ρ

⇒ g =
4

3
GπRρ

Now, the mass of the Earth up to a depth d, i.e., within a sphere of radius R− d, is:

M ′ =
4

3
π(R− d)3ρ

8.2 Acceleration due to Gravity at Depth d

g′ =
G

(R− d)2
× 4

3
π(R− d)3ρ

⇒ g′ =
4

3
Gπ(R− d)ρ
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8.3 Ratio of g′ to g

Dividing both sides:

g′

g
=

4
3Gπ(R− d)ρ

4
3GπRρ

⇒ g′

g
=

R− d

R

⇒ g′ = g

(
1− d

R

)

8.4 Percentage Decrease in g at Depth d

Percentage decrease =

(
1− d

R

)
× 100

Percentage decrease in g =
d

R
× 100

Thus, acceleration due to gravity decreases linearly as depth increases.

Mechanical Properties of Solids

9 Energy Stored in a Deformed Body

When a wire is stretched, interatomic forces come into play which oppose the change in config-
uration of the wire. Hence, work must be done against these restoring forces. This work done
in stretching the wire is stored in it as its elastic potential energy.

9.1 Work Done in Stretching a Wire

Let a force F applied to a wire of length L increase its length by ∆L. Initially, the internal
restoring force in the wire is zero. As the length increases by ∆L, the internal force increases
from 0 to F .

Average internal force during stretching:

Favg =
0 + F

2
=

F

2

Work done on the wire:

W = Average Force× Increase in Length

W =
F

2
×∆L

This work is stored as elastic potential energy U in the wire:

U =
1

2
F ×∆L
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9.2 Elastic Potential Energy in Terms of Stress and Strain

Let A be the area of cross-section of the wire. We use:

F = Stress×A,
∆L

L
= Strain

U =
1

2

(
F

A

)
×
(
∆L

L

)
× (AL)

Final Expression for Elastic Potential Energy:

U =
1

2
× Stress× Strain×Volume of Wire

9.3 Elastic Energy Density

The elastic energy density µ is the elastic potential energy per unit volume:

µ =
U

Volume
=

1

2
× Stress× Strain

Since,

Stress = Young’s Modulus× Strain

Final Expression for Elastic Energy Density:

µ =
1

2
×Young’s Modulus× (Strain)2

Thus, the energy stored per unit volume in a stretched wire is directly proportional to the
square of the strain.

Mechanical Properties of Fluids

10 Bernoulli’s Principle

Bernoulli’s Principle states that the sum of pressure energy, kinetic energy, and
potential energy per unit volume of an incompressible, non-viscous fluid in a streamlined
irrotational flow remains constant along a streamline. Mathematically, it is given by:

P +
1

2
ρv2 + ρgh = constant
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Figure 8: Bernoulli’s theorem

10.1 Proof of Bernoulli’s Theorem

Consider a non-viscous and incompressible fluid flowing steadily between two sections A and B
of a pipe of varying cross-section. Let:

• a1 and a2 be the areas of cross-section at A and B, respectively.

• v1 and v2 be the fluid velocities at A and B.

• P1 and P2 be the fluid pressures at A and B.

• h1 and h2 be the heights above the reference level.

Let ρ be the density of the fluid. Since the fluid is incompressible, the mass flow rate remains
constant:

Mass of fluid in time ∆t = Volume×Density

m = a1v1∆tρ = a2v2∆tρ

The change in kinetic energy of the fluid is given by:

∆KE = KEat B −KEat A

=
1

2
m(v22 − v21)

=
1

2
a1v1∆tρ(v22 − v21)

The change in potential energy of the fluid is given by:

∆PE = PEat B − PEat A

= mg(h2 − h1)

= a1v1∆tρg(h2 − h1)
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The work done by the fluid is:

Work done at A−Work done at B

= P1a1v1∆t− P2a2v2∆t

= a1v1∆t(P1 − P2)

By the work-energy theorem:

Net Work Done = Change in Kinetic Energy + Change in Potential Energy

a1v1∆t(P1 − P2) =
1

2
a1v1∆tρ(v22 − v21) + a1v1∆tρg(h2 − h1)

Dividing by a1v1∆t, we get:

P1 − P2 =
1

2
ρv22 −

1

2
ρv21 + ρgh2 − ρgh1

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2

P +
1

2
ρv2 + ρgh = constant

Thus, Bernoulli’s theorem is proved, showing that the sum of pressure energy, kinetic energy,
and potential energy per unit volume remains constant along a streamline.

Thermal Properties of Matter

11 Relation Between Temperature Coefficients of Thermal Ex-
pansion

Thermal expansion occurs in three dimensions and is characterized by three coefficients:

• α – Coefficient of linear expansion

• β – Coefficient of area expansion

• γ – Coefficient of volume expansion
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11.1 1. Definition of the Coefficients

(i) Linear Expansion: When a solid is heated, its length increases according to:

L = L0(1 + α∆T )

where:

• L0 is the initial length,

• L is the final length after temperature rise ∆T ,

• α is the coefficient of linear expansion.

(ii) Area Expansion: The change in area of a solid is given by:

A = A0(1 + β∆T )

where A0 is the initial area and β is the coefficient of area expansion.

(iii) Volume Expansion: The change in volume of a solid follows:

V = V0(1 + γ∆T )

where V0 is the initial volume and γ is the coefficient of volume expansion.

11.2 2. Derivation of the Relation

Since area is the product of two lengths, we approximate:

A = L1 × L2

Using the linear expansion formula:

L1 = L10(1 + α∆T ), L2 = L20(1 + α∆T )

A = L10(1 + α∆T )× L20(1 + α∆T )

Expanding using binomial approximation for small α∆T :

A = A0(1 + 2α∆T + α2∆T 2)

Since α2∆T 2 is very small, it is neglected:

A = A0(1 + 2α∆T )

Comparing with the area expansion formula:

1 + β∆T = 1 + 2α∆T

⇒ β = 2α
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11.3 3. Relation Between α, β, γ

Since volume is the product of three lengths:

V = L1L2L3

Using the linear expansion formula:

V = L10(1 + α∆T )× L20(1 + α∆T )× L30(1 + α∆T )

Expanding:

V = V0(1 + 3α∆T + 3α2∆T 2 + α3∆T 3)

Neglecting higher-order small terms:

V = V0(1 + 3α∆T )

Comparing with the volume expansion formula:

1 + γ∆T = 1 + 3α∆T

⇒ γ = 3α

11.4 4. Final Relationship

Thus, the required relations between the temperature coefficients of thermal expansion are:

β = 2α, γ = 3α

These equations show that the area expansion coefficient is twice the linear expansion coef-
ficient, and the volume expansion coefficient is three times the linear expansion coefficient.

Thermodynamics

12 Molar Heat Relation: Mayer’s Formula

Consider n moles of an ideal gas. Heat is supplied to raise its temperature by dT . According
to the first law of thermodynamics, the heat supplied dQ is used partly to increase the
internal energy and partly to do the work of expansion. That is:
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dQ = dU + PdV

If the heat dQ is absorbed at constant volume, then dV = 0, so:

dQ = nCvdT

⇒ dQ = dU

⇒ dU = nCvdT · · · (i)

If the heat dQ is absorbed at constant pressure, then:

dQ = dU + PdV

⇒ nCpdT = dU + PdV

Since the change in internal energy is the same in both cases (because the temper-
ature change is the same), we substitute equation (i):

nCpdT = nCvdT + PdV

⇒ n(Cp − Cv)dT = PdV

For an ideal gas,

PV = nRT

Differentiating both sides:

PdV = nRdT

Substituting PdV = nRdT in the previous equation:

n(Cp − Cv)dT = nRdT

Dividing by ndT :

Cp − Cv = R

Cp − Cv = R

Thus, this is the required Mayer’s Formula, which establishes the relation between molar
heat capacities at constant pressure and constant volume.

Kinetic Theory of Gases
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Figure 9: Pressure due to ideal gas

13 Pressure Due to an Ideal Gas

Consider a cubical chamber of edge length ℓ containing an ideal gas. Let the number of molecules
per unit volume be n. Consider a molecule with velocity v having components vx, vy, vz.

The momentum of a gas molecule before hitting a wall (say ABCD) is:

Initial Momentum = mvx

Since collisions of an ideal gas (according to KTG) are perfectly elastic, the molecule re-
bounds with velocity −vx after hitting the wall. Hence, the momentum after collision is:

Final Momentum = −mvx

Change in momentum of the molecule:

∆p = −mvx −mvx = −2mvx

Momentum imparted to the wall:

Momentum imparted = 2mvx

The number of molecules that can hit the wall in time ∆t is given by:

nv̄x∆tℓ2
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However, since half of the molecules are moving in the opposite direction, the number of
molecules that actually hit the wall is:

1

2
nv̄x∆tℓ2

Total momentum transferred to the wall in time ∆t:

Total Momentum =
1

2
nv̄x∆tℓ2 × 2mv̄x

= mnv̄2x∆tℓ2

Force exerted on the wall:

F =
Total Momentum

∆t

F =
mnv̄2x∆tℓ2

∆t

F = mnv̄2xℓ
2

Since pressure is force per unit area:

Px =
Force

Area

Px =
mnv̄2xℓ

2

ℓ2
= mnv̄2x

Since gas molecules move randomly in all directions, the velocity components are equal in
all directions:

v̄2 = v̄2x + v̄2y + v̄2z

v̄2 = 3v̄2x ⇒ v̄2x =
1

3
v̄2

Thus, substituting in the pressure equation:

P =
1

3
mnv̄2

Since mn = ρ (density of gas), we get:

P =
1

3
ρv̄2

This equation represents the pressure exerted by an ideal gas in terms of molecular velocity.

Oscillations

14 Simple Harmonic Motion (SHM)

A body executing SHM can be compared to a body performing uniform circular motion. Let
the body move in a circular path of radius A and cover an angle θ in time t after starting from
X(A, 0) at t = 0.
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Figure 10: Comparison of circular motion with SHM

14.1 Displacement in SHM

From the right-angled triangle,

y

A
= sin θ

Since θ = ωt,

y = A sinωt

This is the displacement equation of a body whose motion has amplitude A and angular
frequency ω.

14.2 Velocity in SHM

Velocity is the time derivative of displacement:

v =
dy

dt
= Aω cosωt

Using sin2 θ + cos2 θ = 1:

v = Aω
√
1− sin2 ωt

v = Aω

√
1− y2

A2
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v = ω
√
A2 − y2

The maximum velocity occurs at y = 0:

vmax = Aω

14.3 Acceleration in SHM

Acceleration is the derivative of velocity:

a =
dv

dt
=

d

dt
(Aω cosωt)

a = −Aω2 sinωt

a = −ω2y

14.4 Restoring Force in SHM

By Newton’s Second Law,

F = ma

F = −mω2y

14.5 Time Period of SHM

We know that the angular frequency is given by:

ω =

√
k

m

2π

T
=

√
k

m

T = 2π

√
m

k

Also, from a = −ω2y,
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ω =

√
a

y

2π

T
=

√
a

y

T = 2π

√
y

a

14.6 Kinetic Energy in SHM

Kinetic energy is given by:

KE =
1

2
mv2

KE =
1

2
m(ω

√
A2 − y2)2

KE =
1

2
mω2A2 − 1

2
mω2y2

14.7 Potential Energy in SHM

Potential energy is given by:

PE =
1

2
ky2

Using k = mω2,

PE =
1

2
mω2y2

14.8 Total Energy in SHM

TE = PE +KE

TE =
1

2
mω2y2 +

1

2
mω2A2 − 1

2
mω2y2

TE =
1

2
mω2A2
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Thus, total energy in SHM remains constant and is proportional to the square of the am-
plitude.

TE =
1

2
mω2A2

Waves

15 Equation of a Plane Progressive Wave

Suppose a simple harmonic wave starts from the origin O and travels along the positive
direction of the X-axis with speed v. Let time t be measured from the instant when the particle
at the origin O is passing through the mean position.

Figure 11: Plane progressive wave

Taking the initial phase of the particle to be zero, the displacement of the particle at the
origin O (i.e., at x = 0) at any instant t is given by:

y(0, t) = A sinωt · · · (i)

where:

• A is the amplitude of the wave,

• T is the time period of the wave.
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15.1 Displacement at a Distance x

Consider a particle P on the x-axis at a distance x from O. The disturbance starting from the
origin O will reach P in x

v seconds later than the particle at O.
Thus, the displacement of the particle at P at any instant t is the same as the displacement

of the particle at O at an earlier time:

Displacement at P = Displacement at O at time
(
t− x

v

)
Using equation (i):

y(x, t) = A sinω
(
t− x

v

)
Expanding:

y(x, t) = A sin
(
ωt− ω

v
x
)

15.2 Wave Number and Final Wave Equation

The term ω
v can be rewritten using:

ω

v
=

2πv

vλ
=

2π

λ
= k

where k is the angular wave number, defined as:

k =
2π

λ

Thus, the final equation of a plane progressive wave is:

y(x, t) = A sin(ωt− kx)

where:

• k is the wave number,

• λ is the wavelength.

This equation represents a sinusoidal wave moving in the positive x-direction.
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