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Motion in a Straight Line

1 Equations of Motion using Calculus Method
In kinematics, the three equations of motion describe the relationship between velocity, acceler-

ation, time, and displacement for an object moving under uniform acceleration. These equations
can be derived using differential and integral calculus.

| 3 Watch on YouTube

Equation of motion using calculus method

1.1 First Equation of Motion: v = u + at

Acceleration is defined as the rate of change of velocity:

dv
0= —
dt
Rearranging:
dv=adt

Integrating both sides from initial velocity (u) to final velocity (v) over the time interval 0

to t:
v t
/dv:/adt
u 0

Solving the integrals:

o]y, = alt]g
v—u=at
v=u-+at

Explanation: The first equation of motion states that the final velocity (v) is equal to
the initial velocity (u) plus the product of acceleration (a) and time (¢).
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1.2 Second Equation of Motion: s = ut + %at2

Velocity is the rate of change of displacement:

ds
v=—
dt
Substituting v = u + at:
ds +at
— =u-+a
dt

Rearranging:

ds = (u+ at)dt

Integrating both sides from displacement 0 to s over the time interval 0 to t:

s t
/ds:/(u—l—at)dt
0 0

Solving the integrals:

1t
[s]g = [ut b atQ]
2 Jo
Ft ar?
s=ut+ -a
2

Explanation: The second equation of motion expresses the displacement (s) in terms
of initial velocity (u), acceleration (a), and time ().

1.3 Third Equation of Motion: v? = u? + 2as

We use the chain rule:

dv dv ds dv
a _

Tt ds dt ds
Rearranging:

ads =vdv

Integrating both sides from s =0to s =sand v = u to v = v:

/Udv:/ ads
u 0

2] =t

u

Solving the integrals:

v? u?
2 2

= as
Multiplying both sides by 2:

v? = u? + 2as
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Explanation: The third equation of motion relates the final velocity (v) to initial ve-
locity (u), acceleration (a), and displacement (s) without involving time.

These derivations confirm the three fundamental kinematic equations using the calculus
approach.

Motion in a Plane

2 Horizontal Projectile Motion

[ Watch on YouTube

Horizontal Projectile Motion

In horizontal projectile motion, a body is projected with an initial velocity u in the horizontal
direction from a height H. The motion can be analyzed as a combination of two independent
components:

1. Horizontal motion: Uniform motion with constant velocity w.

2. Vertical motion: Uniformly accelerated motion under the influence of gravity g (taken
as negative for downward motion).

Range (R)

Figure 1: Horizontal projectile motion
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Theory:

e The horizontal velocity remains constant because there is no acceleration in the horizontal
direction.

e The vertical motion is influenced only by gravity, leading to an acceleration g.

e The trajectory of the body is a parabola, as the horizontal and vertical motions combine
to form a curved path.

2.1 Cartesian Equation of Trajectory for Horizontal Projectile Motion

To derive the trajectory equation of the horizontal projectile, we eliminate time t from the
horizontal and vertical motion equations.

2.1.1 Step 1: Horizontal Displacement Equation

The horizontal displacement is given by:

Solving for ¢:

T
=
u

2.1.2 Step 2: Vertical Displacement Equation

The vertical displacement is:

L s
= gt
Y 29
Substituting ¢t = 7 into the vertical motion equation:
=3 (1)
v= 29 i
9 2
=——x
4 2u?

2.1.3 Final Trajectory Equation

The Cartesian equation of the trajectory is:

g 2

V= 5"

This equation represents a parabolic trajectory, confirming that the horizontal projectile
follows a parabolic path.
2.2 Time of Flight (T)

The time of flight is the total time taken by the body to hit the ground. This depends only
on the vertical motion.
From the vertical displacement equation:

y=-H
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Substituting the equation of motion:

1
= —qT?
Yy 29
Equating:
1
—H = ——gT?
59
Rearranging:
T2 — ﬁ
g
Taking the square root on both sides:
2H
T=,—
9
2H
T=,—
9

Thus, the time of flight depends on the initial height (H) and the acceleration due to gravity
(g9), but not on the initial velocity (u).

2.3 Horizontal Range (R)

The horizontal range is the distance covered in the horizontal direction before the body hits
the ground.
Using horizontal motion:

T =ut
For the total flight time:
R=uT
Substituting T = %:
2H
R=uy/—
g
2H
R=uy|—
g

Thus, the horizontal range depends on the initial velocity (u) and the initial height (H),
but not on the gravitational acceleration (g) alone.
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2.4 Velocity at Any Instant (?)

At any time t, the velocity has both horizontal and vertical components.
Horizontal Component:

Ve = U

Vertical Component:
From vertical motion:

The velocity vector is:
Substituting the components:

Magnitude of Velocity:
The magnitude of velocity is given by:

AW 2
v =4 /vz+ vy

v =/u?+ (—gt)?
v = /U2 + g2

Thus, the velocity at any instant depends on both the initial horizontal velocity (u) and the
vertical component introduced by gravity (gt).

Substituting the components:

3 Angular Projectile Motion

| W Watch on YouTube

Angular Projectile Motion

A body is projected from the ground with an initial velocity u at an angle § with the
horizontal. The motion can be analyzed using horizontal and vertical components:

e The horizontal velocity component is u, = u cos 6.

e The vertical velocity component is u, = usin6.
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e Acceleration due to gravity g acts downward (negative direction).

¥
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Figure 2: Angular projectile motion

3.1 Cartesian Equation of Trajectory

To derive the trajectory equation, we eliminate ¢ from the horizontal and vertical motion equa-
tions.
Step 1: Horizontal Motion Equation

x = uyt = (ucosh)t

Solving for ¢:

Step 2: Vertical Motion Equation

t 1 12
= Uyt — =
Yy y 29

Substituting u, = usin 6:

1
y = (usinf)t — igt2

Step 3: Eliminating ¢
Substituting t = —=

ucosf "’

y = (usin0) w 1g( < )2

ucosf 27 \ycosf
Simplifying:
g 2
=ztanf — ————
Yy = hal 2uZ cos? 0
Final Cartesian Equation of Trajectory:
g 2
=ztanf — ——————=
4 2u? cos?

This equation represents a **parabolic trajectory™*.
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3.2 Time of Flight (T)

The time of flight is the total time for which the projectile remains in the air.
Using the vertical motion equation:

t 1#
= Uyt — =
Yy y 29

At the highest point and when the projectile lands, y = 0:

1
O:@wmﬁT—§ﬂﬂ

Rearranging:

1
T (usinﬁ— 29T> =0

Solving for T":

T 2u sin 0
g
Final Time of Flight:
T 2u sin 0
g

3.3 Maximum Height Attained (H)

At maximum height, the vertical velocity becomes zero (v, = 0). Using:

U; = u?/ —29gH
Substituting u, = usinf and v, = 0:

0 = (usin6)? — 2gH

Solving for H:

Final Maximum Height:

3.4 Horizontal Range (R)

The horizontal range is the total horizontal distance covered during the flight. It is given by:

R =u,T
Substituting u, = wcosf and T = 2using.
2u sin 0
R = (ucosf) x us

g
Using the identity 2sin 6 cos § = sin 26:
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u? sin 26

g

Final Horizontal Range:

u? sin 26

g

3.5 Velocity at Any Instant ()

The velocity at any instant ¢ consists of both horizontal and vertical components.
Horizontal Component:
vy = ucosf

Vertical Component:
vy = usin@ — gt
Velocity Vector:
U = vzl + vyJ

Substituting values:

' = ucos i + (usind — gt);
v =4/v2+ vl

v = \/u2cos? 0 + (usinf — gt)2
Final Magnitude of Velocity:

Magnitude of Velocity:

Substituting:

v = /u2+ ¢g%2 — 2ugtsinf

This formula represents the velocity magnitude at any instant during projectile motion.

Laws of motion

4 Banking of Roads

[ W Watch on YouTube

Banking of Roads

A vehicle moving on a banked road experiences both normal reaction and friction, which
together provide the necessary centripetal force.
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4.1 Forces Acting on the Vehicle

The forces acting on a car of mass m moving on a banked curve of radius r are:
e Weight (mg) acting vertically downward.
e Normal Reaction (N) exerted by the road, acting perpendicular to the surface.

e Friction Force (f) between the tires and the road surface, which acts along the inclined
plane.

4.2 Resolving Forces into Components
The forces are resolved into horizontal and vertical components:
e Vertical direction (force balance equation):
mg + fsinf) = N cos6
mg = N cosf — fsinf

e Horizontal direction (providing centripetal force):

mv2

Nsinf + fcosf = —

Figure 3: Banking of roads with friction

4.3 Derivation of Maximum Speed for Safe Turn

Dividing the centripetal force equation by the vertical force equation:

Nsinf + fcost mu?
Ncosf — fsinf  rmg

vZ  sinf + %COS@

rg " cosf — %sin&

Since % = 1 (coefficient of friction), we get:
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v? _ sinf + pcos6

rg cos® — pusinf

o rg(tand + p)
N 1—ptand

Final Condition for Safe Turning with Banking and Friction

The maximum speed v at which a vehicle can take a turn safely on a banked road with
friction is:

Y rg(tané + p)
1— ptand
where:
e r = Radius of the turn.
e g = Acceleration due to gravity.

e ( = Banking angle of the road.

e 1 = Coeflicient of friction between the tires and the road.

Work Energy Power

5 Velocities After One-Dimensional Elastic Collision

{ ¥ Watch on YouTube

Elastic collision in 1 dimension

Consider two bodies of masses m; and mgy moving along the same straight line with initial
velocities uy and ug, respectively. After an elastic collision, their velocities change to v; and vs.

According to the law of conservation of momentum, the total momentum before and after
the collision remains the same:

miul + Motz = Miv1 + Mav2

Rearranging,

ml(ul - ’1}1) = mQ('UQ — UQ) (1)

Since the collision is elastic, the total kinetic energy is also conserved:
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my my
my my
Before collision After collision

Figure 4: Elastic collision in 1 dimension

1 24 1 2 1 2 4 1 2
—miul + =mous = —miv] + —Mav
2 17 2 2U9 2 1Y 2 202
Multiplying the entire equation by 2 to eliminate fractions:
mlu% + mgu% = mlv% + mgvg
Rearranging,
my(uf —v?) = mo(vs —u3) ..(ii)

We can factorize equation (ii) using the identity a® — v = (a — b)(a + b):
my(u1 — v1)(u1 +v1) = ma(v2 — ug)(ve + uz)
Dividing equation (ii) by equation (i), we get:

(u1 — vl)(ul + 7)1) B (v2 — UQ)(UQ + UQ)
(wp—v1)  (v2—u)

Canceling common terms:

up + v = v + u2

Rearranging:

Uy — U2 = V2 — U1 (111)

This shows that the relative velocity of approach before the collision is equal to the
relative velocity of separation after the collision.
The coefficient of restitution (e) is given by the formula:

relative velocity of separation

relative velocity of approach

For an elastic collision, e = 1, so:

U2 — U1

Ul — U2

From the relative velocity condition:

Vg = Ul — U2 + 01

Substituting this into the momentum conservation equation:

miuy + moug = myvy + mo(u; — uz + v1)

Expanding:
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miul + Moo = M1V + Mol — Mol + MoV1

Rearranging:

(m1 — ma)uy + 2maus = (M1 + ma)vy

Solving for wvy:

oy = (m1 — ma)uy 2matus
(m1 +ma) (m1 +ma)
Similarly, solving for vs:
vy = (m2 — ml)u2 2m1u1
(m1 + ma) (m1 +ma)

Thus, these equations give the final velocities of the two bodies after a one-dimensional
perfectly elastic collision.

System of particles and rotational motion

6 Position Vector of the Center of Mass of a Two-Particle Sys-
tem

| W Watch on YouTube

Position vector of centre of mass

Consider a system of two particles P; and P, with masses m; and mo, respectively. Let
their position vectors at any instant ¢ be 7 and 7%, measured with respect to the origin O, as
shown in the figure.

The external and internal forces acting on the particles are:

- fi, fg — external forces on particles - ﬁ12, Fh; — internal forces due to mutual interaction

According to Newton’s Second Law, the total force acting on the system is:

dt

Since velocity is the time derivative of position,

fi+ fo+ Fio+ Foy = — (myth + mats)

R dr . diy
U] = ——, Up=—
YU TP e

Thus, the equation becomes:
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my

= s

L J

Figure 5: Centre of mass of a two particle system

L A dm dR
fl+f2+F12+F21_dt<mldt+m2dt>

By Newton’s Third Law:

Fip = —F5
So the internal forces cancel out, and we are left with:

Lo d? . ~
fi+fo= @(mlﬁ + mais)

Multiplying and dividing the right-hand side by m + mo:

d? (mlf’l + m2772>

f1+f2:(m1+m2)@ [ —

Letting F= fl + f}, we get:

. 2 .

F = (m1 +ma) -5 Row
Comparing this equation with:

. d? -

F = (m1 + mQ)WRCM

we obtain the position vector of the center of mass:

— m1771 + m2772
Rey=——""""

mi + ms

6.1 Generalizing for an n-Particle System

For a system of n particles, the center of mass position vector is given by:

M7 + Moty +mars + - +MmuTn
mi1+mo+msg+---+my

Reov =

This equation shows that the center of mass is the weighted mean of the position vectors of
all particles.

Gravitation
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7 Variation of Acceleration due to Gravity with Height

| 3 Watch on YouTube

Variation of g with height

— T —e

Figure 6: Variation of g with height

The acceleration due to gravity at the surface of the Earth is given by:

GM
9=
At a height h above the surface of the Earth, the acceleration due to gravity is:
, GM
I = (R+hy
7.1 Derivation of the Expression
Dividing ¢’ by g:
, GM
g _ (Bth)
0o
g/ R2 )
E = m (Equatlon 1)

Rewriting in a simplified form:
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g/ R2

g RA1+ By

q 1

9 (+p)?

7.2 Binomial Approximation for Small h

For h < R, we use the binomial approximation:

(1+2)"~14nz forz<l

Applying n = —2 and = = %:

Thus,

7.3 Percentage Decrease in Gravity

Rearranging:
/
LA R
g R
-4 2h
979 %100 = = x 100
g R

7.4 Final Expression for Percentage Decrease

2
Percentage decrease in g = = x 100

Thus, the acceleration due to gravity decreases as height increases, and for small heights,
the decrease is approximately linear with height.

8 Variation of Acceleration due to Gravity with Depth

If a body is taken to a depth d below the surface of the Earth, the acceleration due to gravity
at that depth is given by:

. GM

9= R-ap

where M’ is the mass of the spherical part of the Earth of radius (R — d).
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| 3 Watch on YouTube

Figure 7: Variation of g with depth

8.1 Derivation of the Expression

Let the Earth be a uniform sphere of density p. The total mass of the Earth is:

4 .
M = gﬂ'R&p

Thus, acceleration due to gravity at the surface of the Earth is:

G 4
9= 1 X gﬁRgp

4
=g= gGTI‘Rp
Now, the mass of the Earth up to a depth d, i.e., within a sphere of radius R — d, is:

4
M = gﬂ'(R —d)*p

8.2 Acceleration due to Gravity at Depth d

G 4 o 3
g_(R_d)zxgw(R d)°p

4
=4 = gG?T(R —d)p

Mandeep Education Academy, Sector 143, Noida, UP. Ph: 8527020691, 9818189434
Web: www.mandeepeducationacademy.in



Most Important Derivation from Each Chapter Page 18

8.3 Ratio of ¢ to g
Dividing both sides:

d
:>g’—g(1—R>

8.4 Percentage Decrease in g at Depth d

Percentage decrease = <1 — g) x 100

d
Percentage decrease in g = = x 100

Thus, acceleration due to gravity decreases linearly as depth increases.

Mechanical Properties of Solids

9 Energy Stored in a Deformed Body

When a wire is stretched, interatomic forces come into play which oppose the change in config-
uration of the wire. Hence, work must be done against these restoring forces. This work done
in stretching the wire is stored in it as its elastic potential energy.

9.1 Work Done in Stretching a Wire

Let a force F' applied to a wire of length L increase its length by AL. Initially, the internal
restoring force in the wire is zero. As the length increases by AL, the internal force increases
from 0 to F.

Average internal force during stretching:

Work done on the wire:

W = Average Force x Increase in Length

WzngL

This work is stored as elastic potential energy U in the wire:

U:%FXAL
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9.2 Elastic Potential Energy in Terms of Stress and Strain

Let A be the area of cross-section of the wire. We use:

AL
F = Stress x A, - = Strain

U= % (i) X (ALL> « (AL)

Final Expression for Elastic Potential Energy:

1
U= 5 x Stress x Strain x Volume of Wire

9.3 Elastic Energy Density

The elastic energy density u is the elastic potential energy per unit volume:

u 1 X St X Strai
— == I rain
Volume 2 . &

7

Since,

Stress = Young’s Modulus x Strain

Final Expression for Elastic Energy Density:

2

1
p=g X Young’s Modulus x (Strain)

Thus, the energy stored per unit volume in a stretched wire is directly proportional to the
square of the strain.

Mechanical Properties of Fluids

10 Bernoulli’s Principle

{ W Watch on YouTube

Bernoulli’s theorem

Bernoulli’s Principle states that the sum of pressure energy, kinetic energy, and
potential energy per unit volume of an incompressible, non-viscous fluid in a streamlined
irrotational flow remains constant along a streamline. Mathematically, it is given by:

1
P+ 5/)122 + pgh = constant
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Figure 8: Bernoulli’s theorem

10.1 Proof of Bernoulli’s Theorem

Consider a non-viscous and incompressible fluid flowing steadily between two sections A and B
of a pipe of varying cross-section. Let:

e a; and as be the areas of cross-section at A and B, respectively.
e v and vo be the fluid velocities at A and B.
e P and P, be the fluid pressures at A and B.

e hy and hy be the heights above the reference level.

Let p be the density of the fluid. Since the fluid is incompressible, the mass flow rate remains
constant:

Mass of fluid in time At = Volume x Density
m = a1v1Atp = agsva Atp
The change in kinetic energy of the fluid is given by:

AKE = KEy g — KFut 4

1
— im0} - o)

1
= ialletp(v% —v?)

The change in potential energy of the fluid is given by:

APE = PE,  — PEy 4
=mg(ha — h1)

= alletpg(hg — hl)
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The work done by the fluid is:

Work done at A — Work done at B
= Plallet — Pgazngt

= allet(Pl — Pg)
By the work-energy theorem:
Net Work Done = Change in Kinetic Energy 4+ Change in Potential Energy
1
a1 At(P, — Pp) = §a1v1Atp(v§ — v%) + ayv1Atpg(hy — hq)
Dividing by aiv1At, we get:

1 1
Py— Py = S pvg = Spvi + pghs = pgha

1 1
P+ §PU% + pgh1 = P2 + 5,01)% + pgha

1
P+ ipv2 + pgh = constant

Thus, Bernoulli’s theorem is proved, showing that the sum of pressure energy, kinetic energy,
and potential energy per unit volume remains constant along a streamline.

Thermal Properties of Matter

11 Relation Between Temperature Coefficients of Thermal Ex-
pansion

| 3 Watch on YouTube

Relation between alpha, beta and gamma

Thermal expansion occurs in three dimensions and is characterized by three coefficients:
e o — Coefficient of linear expansion
e § — Coeflicient of area expansion

e v — Coefficient of volume expansion
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11.1 1. Definition of the Coefficients

(i) Linear Expansion: When a solid is heated, its length increases according to:

L = Ly(1 + aAT)

where:

e [ is the initial length,

e L is the final length after temperature rise AT,

e « is the coefficient of linear expansion.

(ii) Area Expansion: The change in area of a solid is given by:
A= Ap(1+ BAT)

where Ag is the initial area and 3 is the coefficient of area expansion.
(iii) Volume Expansion: The change in volume of a solid follows:

V =Wo(1+~AT)

where Vj is the initial volume and ~ is the coefficient of volume expansion.

11.2 2. Derivation of the Relation

Since area is the product of two lengths, we approximate:

A:L1><L2

Using the linear expansion formula:

L = L10(1 + CKAT), Ly = L20(1 + OéAT)

A= Llo(l + OéAT) X Lgo(l + OéAT)

Expanding using binomial approximation for small aAT":

A= Ag(1 + 2aAT + o*AT?)

Since a?AT? is very small, it is neglected:

A = Ay(1 + 2aAT)

Comparing with the area expansion formula:

1+ BAT =1+ 2aAT

= 0 =2«
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11.3 3. Relation Between «, 3,

Since volume is the product of three lengths:

V=L1LsL3
Using the linear expansion formula:
V= Llo(l + OéAT) X LQ()(]. + OéAT) X Lgo(l + OéAT)
Expanding:
V = Vo(1 4 3aAT + 3a2AT? 4+ o3AT?)
Neglecting higher-order small terms:

V = Vo(1 4 3aAT)

Comparing with the volume expansion formula:
14+ ~vAT =1+ 3aAT
=7 =3«

11.4 4. Final Relationship

Thus, the required relations between the temperature coefficients of thermal expansion are:

‘52204, WzBoz‘

These equations show that the area expansion coefficient is twice the linear expansion coef-
ficient, and the volume expansion coefficient is three times the linear expansion coefficient.

Thermodynamics

12 Molar Heat Relation: Mayer’s Formula

| W Watch on YouTube

L

Mayer’s formula

Consider n moles of an ideal gas. Heat is supplied to raise its temperature by dT. According
to the first law of thermodynamics, the heat supplied d@ is used partly to increase the
internal energy and partly to do the work of expansion. That is:
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dQ = dU + PdV

If the heat d(@ is absorbed at constant volume, then dV = 0, so:

dQ = nC,dT
= dQ =dU

= dU = nCydT --- (i)

If the heat d(@ is absorbed at constant pressure, then:

dQ = dU + PdV

= nC,dT = dU + PdV

Since the change in internal energy is the same in both cases (because the temper-
ature change is the same), we substitute equation (i):

nCpdT = nCydT + PdV

= n(C, — Cy)dT = PdV

For an ideal gas,

PV =nRT

Differentiating both sides:

PdV =nRdIT

Substituting PdV = nRdT in the previous equation:

n(C, — Cy)dT = nRdT

Dividing by ndT"
C,—Cy=R

Thus, this is the required Mayer’s Formula, which establishes the relation between molar
heat capacities at constant pressure and constant volume.

Kinetic Theory of Gases
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Pressure due to an ideal gas
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Figure 9: Pressure due to ideal gas

13 Pressure Due to an Ideal Gas

Consider a cubical chamber of edge length ¢ containing an ideal gas. Let the number of molecules
per unit volume be n. Consider a molecule with velocity v having components v, vy, v..
The momentum of a gas molecule before hitting a wall (say ABCD) is:

Initial Momentum = mu,

Since collisions of an ideal gas (according to KTG) are perfectly elastic, the molecule re-
bounds with velocity —uv, after hitting the wall. Hence, the momentum after collision is:

Final Momentum = —muw,

Change in momentum of the molecule:

Ap = —mu, — mu, = —2mu,

Momentum imparted to the wall:

Momentum imparted = 2mu,,

The number of molecules that can hit the wall in time At is given by:

N, Atl?
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However, since half of the molecules are moving in the opposite direction, the number of

molecules that actually hit the wall is:
1
—nu, Atl?
2
Total momentum transferred to the wall in time A¢:

1
Total Momentum = §m7xAt€2 X 2muy

= mno2 Atl?

Force exerted on the wall:

Total Momentum
F=
At

mnv2Atl?
At

F = mnv2(?

Since pressure is force per unit area:

Force
P E—
T Area

2

mm‘)?cfQ B
= mnuj

/2
Since gas molecules move randomly in all directions, the velocity components are equal in

P, =

all directions:

Thus, substituting in the pressure equation:

1
P = —mnv?
3
Since mn = p (density of gas), we get:
1
P = —pv?
3P

This equation represents the pressure exerted by an ideal gas in terms of molecular velocity.

Oscillations

14 Simple Harmonic Motion (SHM)

A body executing SHM can be compared to a body performing uniform circular motion. Let
the body move in a circular path of radius A and cover an angle # in time ¢ after starting from

X(A,0) at t = 0.
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X(A,0)

Figure 10: Comparison of circular motion with SHM

14.1 Displacement in SHM

From the right-angled triangle,

2 —<ind
7 = sin

Since 0 = wt,

y = Asinwt

This is the displacement equation of a body whose motion has amplitude A and angular
frequency w.
14.2 Velocity in SHM
Velocity is the time derivative of displacement:

dy

= = Aw coswt
dt

v
Using sin? 0 + cos? 0 = 1:

v=AwV 1 — sin? wt

/ 2
v = Aw 1—%
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Velocity & acceleration in SHM

v =wy/ A2 — g2

The maximum velocity occurs at y = 0:
Umax = Aw
14.3 Acceleration in SHM

Acceleration is the derivative of velocity:

dv d

= — = — A
a=— dt( w cos wt)
a=—Aw?sinwt

a=—w?y
14.4 Restoring Force in SHM
By Newton’s Second Law,

F=ma

F = —mw?y

14.5 Time Period of SHM

We know that the angular frequency is given by:

Also, from a = —w?y,

Mandeep Education Academy, Sector 143, Noida, UP. Ph: 8527020691, 9818189434

Web: www.mandeepeducationacademy.in



Most Important Derivation from Each Chapter

Page 29

14.6 Kinetic Energy in SHM

| W Watch on YouTube
-

[=]

Kinetic energy is given by:

1 1
KE = —mw?A% — Zmw*y?
2 2
14.7 Potential Energy in SHM
Potential energy is given by:
PE = ~ky?

Using k = mw?

Y

PE = —mw?y?

14.8 Total Energy in SHM

TE=PE+ KE

1 1
TE = §mw2y2 + imMQAZ — §mw2y2
Lo 9,0
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Thus, total energy in SHM remains constant and is proportional to the square of the am-
plitude.

TE = %mcﬂA?
Waves

15 Equation of a Plane Progressive Wave

| W Watch on YouTube

Equation of plane progressive wave

Suppose a simple harmonic wave starts from the origin O and travels along the positive
direction of the X-axis with speed v. Let time ¢ be measured from the instant when the particle
at the origin O is passing through the mean position.

Wave veloaty v
L0

— X ‘_“I \/
-Af

Figure 11: Plane progressive wave

Taking the initial phase of the particle to be zero, the displacement of the particle at the
origin O (i.e., at x = 0) at any instant ¢ is given by:

y(0,t) = Asinwt -+ (i)
where:

e A is the amplitude of the wave,

e T is the time period of the wave.
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15.1 Displacement at a Distance =

Consider a particle P on the z-axis at a distance x from O. The disturbance starting from the
origin O will reach P in I seconds later than the particle at O.

Thus, the displacement of the particle at P at any instant ¢ is the same as the displacement
of the particle at O at an earlier time:

x
Displacement at P = Displacement at O at time (t — —)
v

Using equation (i):
y(z,t) = Asinw (t - E)
v
Expanding:

y(z,t) = Asin <wt - %x)

15.2 Wave Number and Final Wave Equation

The term % can be rewritten using:
w _ 2mv 27 I
v oA X

where k is the angular wave number, defined as:

_ 2m
A
Thus, the final equation of a plane progressive wave is:

k

‘y(x, t) = Asin(wt — kx) ‘

where:

e [ is the wave number,

e )\ is the wavelength.

This equation represents a sinusoidal wave moving in the positive z-direction.
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