## Oscillations

### Most important question – answers

| Question (1): For a | an oscillating bo | ody, derive an expr | ession for its |  |
|---------------------|-------------------|---------------------|----------------|--|
| a. Displacement     |                   |                     |                |  |
| b. Velocity         |                   |                     |                |  |
| c. Acceleration     |                   |                     |                |  |
| d. Force acting on  | it                |                     |                |  |
| e. Time period      |                   |                     |                |  |
| f. Potential energy |                   |                     |                |  |
| g. Kinetic energy   |                   |                     |                |  |
| h. Total energy     |                   |                     |                |  |
|                     |                   |                     |                |  |

#### Displacement

A body executing SHM can be compared with a body doing circular motion having radius A as shown. Let this body covers an angle  $\theta$  in time after starting from X (A,0) at t = 0.

In ∆OBP

 $\frac{y}{A} = \sin\theta$ 

∴ y = A sinωt

This is the displacement equation of a body amplitude of whose motion is A and angular frequency is  $\omega$ 





$$TE = PE + KE \Longrightarrow TE = \frac{1}{2}m\omega^2 y^2 + \frac{1}{2}m\omega^2 A^2 - \frac{1}{2}m\omega^2 y^2 \Longrightarrow \left| TE = \frac{1}{2}m\omega^2 A^2 \right|$$

#### Question (2): Derive an expression for time period of a simple pendulum.

Consider a pendulum of length L connected to a bob of mass m as shown. Now from figure it is clear that  $mg\sin\theta$  provides the necessary restoring force. Therefore



Question (3): Derive an expression for time period of a block connected to spring

#### Horizontal spring



In this spring mass system shown in figure above, time period of oscillation is given by



Vertical spring



When a block is connected to a vertical spring, it extends by an amount  $\ell$  so that the restoring force balances the weight of the block. Therefore,

$$mg = k\ell$$
  
So, k =  $\frac{mg}{\ell}$   
mg = k $\ell$   
So, k =  $\frac{mg}{\ell}$   
Now, when this spring is pulled by a distance y, it starts doing SHM with time period T which is given by

$$\therefore T = 2\pi \sqrt{\frac{m\ell}{mg}}$$

$$T = 2\pi \sqrt{\frac{\ell}{g}}$$

# Question (4): Derive equivalent spring constant for a combination of springs connected in (a) Series (b) Parallel

#### Series combination

Consider two springs of spring constants  $k_1$  and  $k_2$  connected in series as shown. Now, when this system oscillates, extensions in springs be  $y_1$  and  $y_2$ , then

minne

$$\mathbf{F}=-\mathbf{k}_{1}\mathbf{y}_{1}=-\mathbf{k}_{2}\mathbf{y}_{2}$$

Total extension is

$$y = y_{1} + y_{2}$$

$$\Rightarrow y = -\frac{F}{k_{1}} - \frac{F}{k_{1}}$$

$$\Rightarrow y = -F\left(\frac{1}{k_{1}} + \frac{1}{k_{2}}\right)$$

$$\Rightarrow F = -\left(\frac{k_{1}k_{2}}{k_{1} + k_{2}}\right)y$$
Comparing it with F = -kx, we get
$$k = \frac{k_{1}k_{2}}{k_{1} + k_{2}}$$
which gives
$$\frac{1}{k} = \frac{1}{k_{1}} + \frac{1}{k_{2}}$$

#### Parallel combination

Consider two springs of spring constants  $k_1$  and  $k_2$  connected in series as shown. Now, when this system oscillates, extensions in springs be <sup>y</sup> and restoring forces be F<sub>1</sub> and F<sub>2</sub>, then

